

CRICOS PROVIDER 00123M

Emerging technologies to lower the cost of renewable gas

Professor Gus Nathan, Director Centre for Energy Technology

Contributors: Mehdi Jafarian, Bassam Dally, Peter Ashman, Maziar Arjomandi, Simon Smart, Woei Saw,

adelaide.edu.au

Introduction

Conversion of hydrogen to methane via Sabatier

- "Excess" power lowers power price of 'some' hydrogen production
 - However, hydrogen is more valuable on average
- CH4 can utilise existing infrastructure as hydrogen carrier

Conversion of methane to hydrogen: SMR or pyrolysis

- Hydrogen is more valuable (if CO2 neutral)
- SMR generates CO2
- Pyrolysis avoids CO2 production
- Can produce a valuable by-product

Critical path: The cost curve for production of CO₂ neutral hydrogen

- Costs of commercial electrolysis is continuing to fall rapidly
- > Other emerging technologies offer potential for lower prices

Methane to Hydrogen Options

	Steam methane reforming	Methane Pyrolysis (or cracking)		
Status	Commercial	Pilot		
Overall Reaction	$CH_4 + H_2O \rightarrow CO + 3H_2$ $CO + H_2O \rightarrow CO_2 + H_2$	$CH_4 \rightarrow C + 2H_2$		
Energy requirement	~20%	~15%		
Carbon by-product	CO2	С		
Process to manage CO ₂	CCS / EGR / reuse	Nano-tubes / char / bury		
Cost for CO ₂ -neutral	~\$1:90 - \$2:30 / kg _{H2}	~\$0:50 - \$1:90 / kg _{H2} (estimated)		

Anticipated cost trajectory & markets for commercial renewable H₂

CSIRO Roadmap (2018): Bruce, Temminghoff, Haywood, Schmidt, Munnings, Palfreyman, Hartley

Gap between projected H₂ costs and current fuels / electricity

Estimated current costs of renewable H₂ in Chile

CSIRO Roadmap (2018): Bruce, Temminghoff, Haywood, Schmidt, Munnings, Palfreyman, Hartley

Estimated costs of renewable NH₃ in Chile

CSIRO Roadmap (2018): Bruce, Temminghoff, Haywood, Schmidt, Munnings, Palfreyman, Hartley

Estimated costs of alternative H2 production options

TABLE 1: COSTS, EFFICIENCIES AND CO₂ EMISSIONS FROM DIFFERENT HYDROGEN PRODUCTION PATHWAYS.

PRODUCTION PROCESS	PRIMARY ENERGY SOURCE	HYDROGEN PRODUCTION ENERGY EFFICIENCY (%, LHV) ³³	HYDROGEN PRODUCTION COST A\$/KG ³⁴		HYDROGEN PRODUCTION COST A\$/GJ (LHV) ³⁵		NET PROCESS CO2
			2018 ESTIMATE	2025 BEST CASE MODEL	2018 ESTIMATE	2025 BEST CASE MODEL	KG CO ₂ /GJ OF HYDROGEN ^{36,37}
Steam methane reforming with CCS	Natural gas	64	2.30-2.80	1.90-2.30	19.20-23.30	15.80-19.20	6.3
Coal gasification with CCS	Coal	55	2.60-3.10	2.00-2.50	21.70-25.80	16.70-20.80	5.9
Alkaline electrolysis	Renewable electricity	58	4.80-5.80	2.50-3.10	40.00-48.30	20.80-25.80	~ 0
PEM electrolysis	Renewable electricity	62	6.10-7.40	2.30-2.80	50.80-61.70	19.20-23.30	~ 0

Finkel Briefing Note to COAG "Hydrogen for Australia's Future" (2019)

University of Adelaide Novel Technologies for H₂ Production

Solar Photocatalysis

Solar Bubble Receiver

Chemical Looping Bubble Reactor

shutterstock

Centre for Energy Technology

$CH_4 + Heat \rightarrow 2H_2 + C_{(solid)}$

- Avoids producing CO₂ by not using steam or O₂
- 60% of the enthalpy is partitioned in the H2
- Potential to generate a valuable carbon by-product
 > high value carbon nano-tubes, etc
 > bulk commodities such as agricultural char
- Can be solarised:
 - use concentrated solar thermal heat to drive the reaction
 - Increases energy of the fuel by 15%

Estimated opportunity for H₂ from methane pyrolysis

Hydrogen Sale Price (\$ kg⁻¹)

Parkinson, Tabatabaei, Upham, Ballinger, Greig, Smart, McFarland (2018), J. Hydrogen Energy, 2540-2555

Commercial status of methane pyrolysis

Abanades et al, *I. J. Hydrogen Energy*, **41**, 8159-67, 2016

Solid catalytic process (Hazer)
 > demonstrated at pilot and above

must address coking of catalyst

Molten metal bubbling reactors

demonstrated at pilot scale
 avoids coking of catalyst, since Carbon floats
 reaction occurs at ~800 °C (in molten tin)

Uni Adelaide / Uni Queensland collaboration

Carbon floats

Multi-Phase Metal/Salt System

Developing advanced materials & reactors together

- > Novel metals and salts (UQ)
- Optimising patent-pending reactors (UA)
- > Demonstrating improved system at lab scale
- ➤Techno-economics

CRC

Bubbling molten metal reactor technology

Solar bubbling reactor demonstrated

- high rates of heat and mass transport
 - Jafarian & Nathan, (2019) Solar Energy (in press)
- > patent-pending interconnected bubbling reactor
 - Jafarian, Abdollahi, Arjomandi, Chinnici, Tian, Nathan (2017) Int. Patent App. No. PCT/AU2018/050034

University of Adelaide

Centre for Energy Technology

Emerging options for solar gasification or reforming For liquid fuels

University of Adelaide

Centre for Energy Technology

ASTRI

AUSTRALIAN SOLAR THERMAL RESEARCH

Solar thermal gasification of agriculture residues:

Value drivers for solar gasification:

- Conversion to diesel yields higher value than power or methane
- Liquid fuels are readily stored
- Steps toward a circular economy re-use in the business
- Avoids the need to connect to a pipeline
- Reduces exposure to potential increases in the cost of diesel
- Market advantage from green products

Solar hybridised dual bed gasification - Typical configuration

University of Adelaide

Centre for Energy Technology

Levelised Cost of Fuel: re 2020 data

Saw et al. (2016), Internal report to ARENA.

Centre for Energy Technology

ASTRI

Final points

Drivers to convert between methane and hydrogen are expected to grow

- methane is an established fuel
- hydrogen is a CO2 free fuel

Strong drivers to also develop methane to hydrogen via pyrolysis

- Anticipated low cost route to mitigate CO2 emissions from NG;
 - potential for CO₂ neutrality with solar thermal production or offsets;
- > Applicable to bio gas as well as natural gas
- Potential to extend the life of natural gas assets

Many alternative technologies for CO2-neutral H2 are under development

- methane pyrolysis / cracking
- solar photo-catalysis
- Solar thermo-chemical water splitting
- solar gasification of biomass with water-gas shift
 - Production of liquid fuels is likely to be more attractive;

Thankyou!

CRICOS PROVIDER 00123M

Centre for Energy Technology

Director: Professor Gus Nathan W: <u>http://www.adelaide.edu.au/cet/</u> T: +61 (0)8 831 31448 E: imer@adelaide.edu.au

adelaide.edu.au

seek LIGHT

Options for producing valuable, green products

Centre for Energy Technology

Utilises Patent Pending Bubbling Cavity Receiver

Centre for Energy Technology

University of Adelaide

The Centre for Energy Technology

- Multi-disciplinary team within the Institute for Mineral & Energy Resources
 - >25 academic staff
 - 13 RA's & > 60 PhD students
 - Engineering, Sciences, Professions
- Strong links with industry
 - 70 recent consultancies
 - \$12m in joint R&D programs
 - Industry Advisory Board
- Strong Research outputs
 - > 140 Journal papers p.a.
 - 2 patents per year
- Significant budget
 - Approx \$8m p.a. (external cash)

University of Adelaide

Centre for Energy Technology

CET Facilities

Four Laser Laboratories (\$5m)

- single and two phase flow
- combustion diagnostics

Thermal technology labs (\$4m)

- Gasification & Pyrolysis
- Solar thermal simulators (× 3)
- Combustors

Large Wind Tunnel: (\$5m)

- 2.8m ×2m × 50m/s Hi-speed
- 3m ×3m × 33m/s

Other specialist facilities & instruments

CET Research Programs

Key CET patented Technologies

CET technologies behind Australia's Exporter of the Year (Optus, 2018)

CET solar technology platforms with strong commercial potential