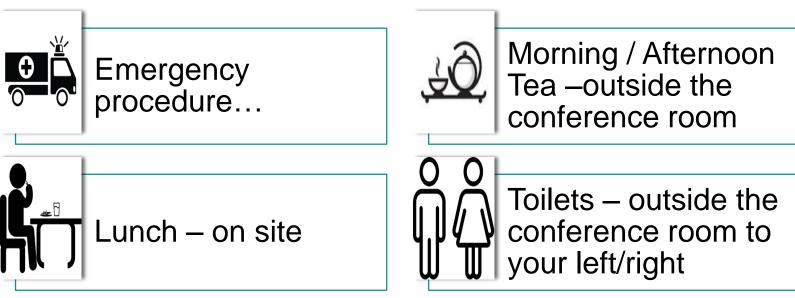


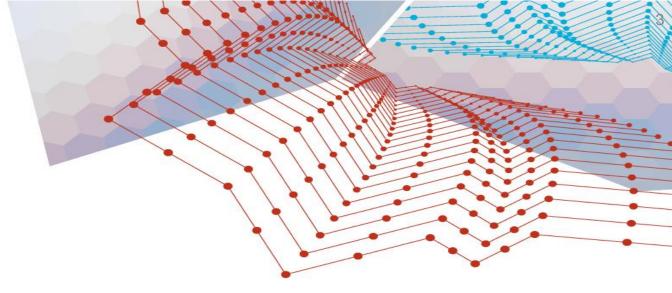
Open Energy Networks Project:

Workshop to test Required Capabilities, test interactive meta-models and discuss CBA methodology


Energy Networks Australia & the Australian Energy Market Operator (AEMO)

March 2019

Logistics & Safety



Workshop materials can be emailed

Workshop Ground Rules

Workshop Ground Rules

Important Notice

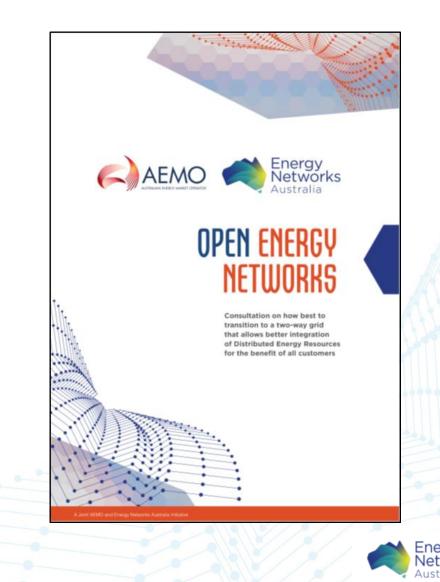
- These slides are solely for workshop purposes only. The contents have been designed to foster a diversity of thinking about future possibilities in Australia. They do not represent the official position of either the Energy Networks Australia or AEMO.
- 'Chatham house' rules apply
- Competition and Consumer Act provisions apply

'Open Energy Networks' Project - Workshop Agenda

10:00 – 10:15	Welcome & Introduction to the Workshop		
10:15 – 11:30	Session 1: Required Capabilities and Actions		
	 1st Order Required Capabilities 		
	 2nd Order Common areas of Action 		
11:30 – 12:30	Session 2: 4 th Model		
	 Provide background and rationale regarding the addition of the 4th model 		
12:30 – 1:15 Lunch			
1:45 – 3:15	Session 3: Market model framework modelling		
	 Outline key outcomes/talking points from modelling 		
	 Demonstrate the interactive html files on SGAM modelling 		
3.15 - 3.30 Afternoon Te	ea		
3:30 – 4:55	Session 4: Cost Benefit Analysis		
	Outline approach for deeper justification of optimisation and DSO		
	Outline approach to qualitative assessment of market model frameworks		
4:55 - 5:00	Workshop Wrap up & Close		
	Summarise day and next steps		

works

Evolution

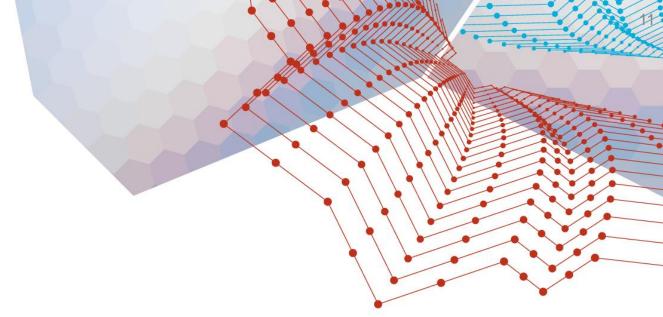

The Roadmap identified that if DER could be optimised and coordinated properly across the system, significant value could be released for all stakeholders

"Open Energy Networks" - Purpose

- The purpose of this project is to work with all stakeholders on how to best facilitate the entry of DER into the market and creates value for all customers
- Our objective is to identify the:
 - 1. Technical system requirements and
 - 2. Accompanying regulatory framework
 - that must be developed for the optimisation of DER connected to the distribution system, in order to
 - reduce barriers for entry into the system and best facilitate innovation and competition that releases value to all customers.

Key principles

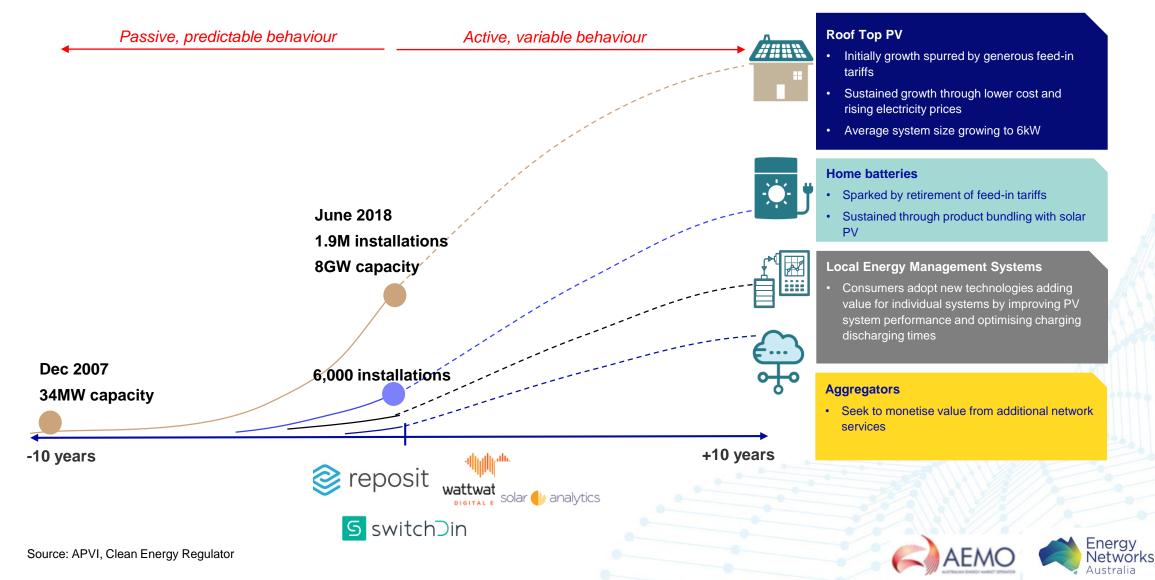
- 1. Simplicity, transparency and adaptability of the system to new technologies
- 2. Supporting affordability whilst maintaining security and reliability of the energy system
- 3. Ensuring the optimal customer outcomes and value across short, medium and long-term horizons both for those with and without their own DER
- 4. Minimising duplication of functionality where possible and utilising existing governance structures without limiting innovation
- 5. Promoting competition in the provision and aggregation of DER, technology neutrality and reducing barriers to entry across the NEM and WEM
- 6. Promoting information transparency and price signals that encourage efficient investment and operational decisions
- 7. Greatest benefit at minimum cost.

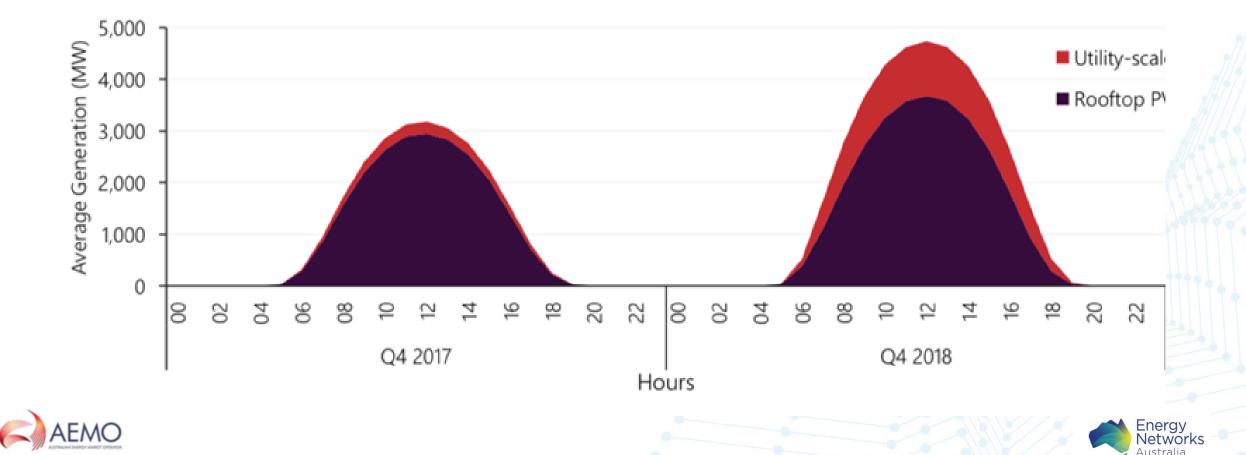


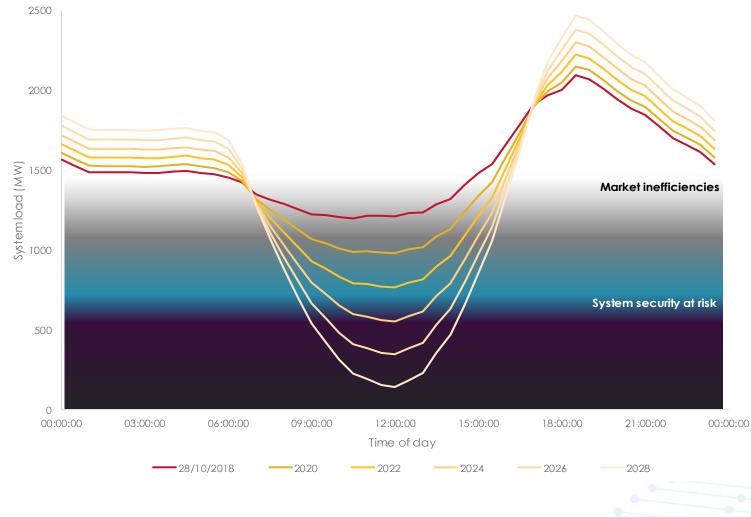
Issues raised in previous OpEN workshops

Energy Networks Australia

Session 1


Required Capabilities and Actions

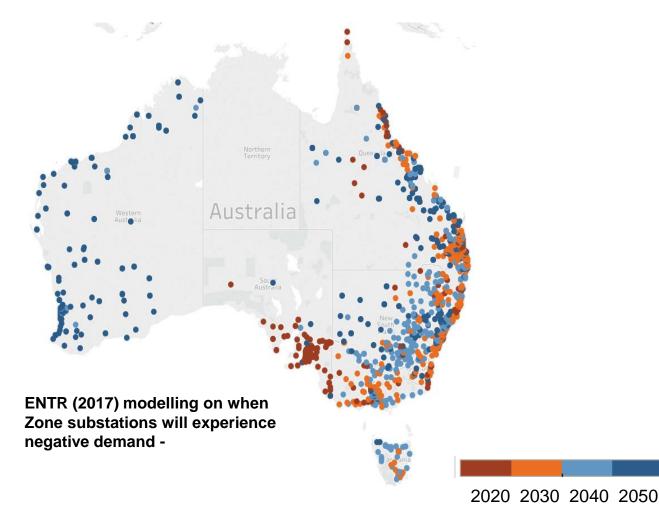


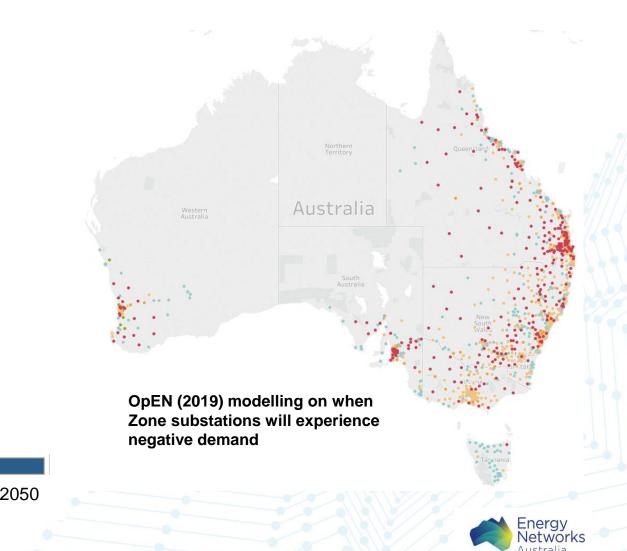

Distributed Energy Resources (DER) are growing in numbers and capacity. They are also becoming smarter

Average NEM hourly large-scale solar and rooftop generation profile across Q4 2017 and Q4 2018

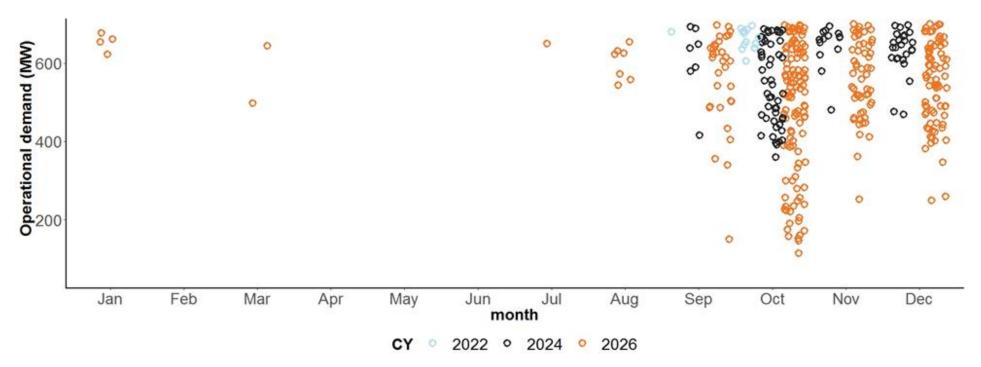
PV forecasts continue to increase, bringing closer system risks...

AEMO's WEM analysis on the shape of the load curve on the minimum demand day, 2018 actuals forecast to 2028, based on a persistence PV forecast


ESOO PV uptake forecasts suggested minimum demand of 500MW in 2028

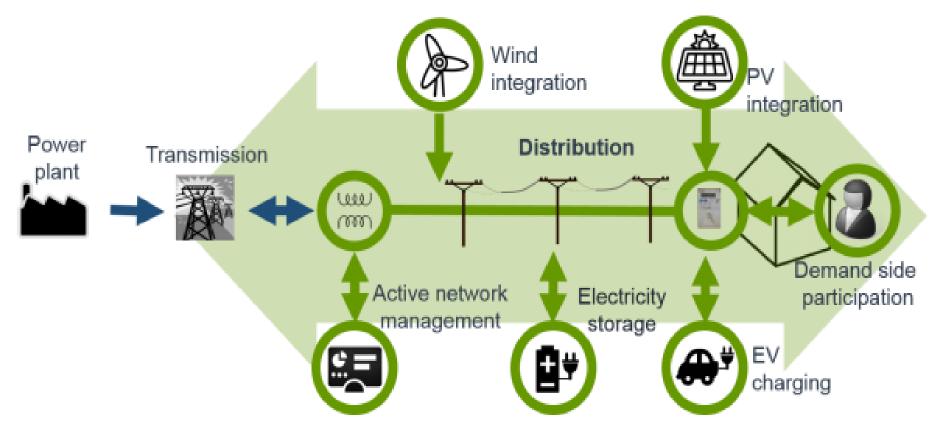


Regional Modelling: Distributed energy resources adoption


Within the next few years, whole regions of Australia's electricity system must be capable of operating securely, reliably and efficiently with 100% or more of instantaneous demand met from distributed energy resources

System security risks cluster around spring and early summer...

WEM: AEMO prediction of distribution of system security risks across a year: events in each month

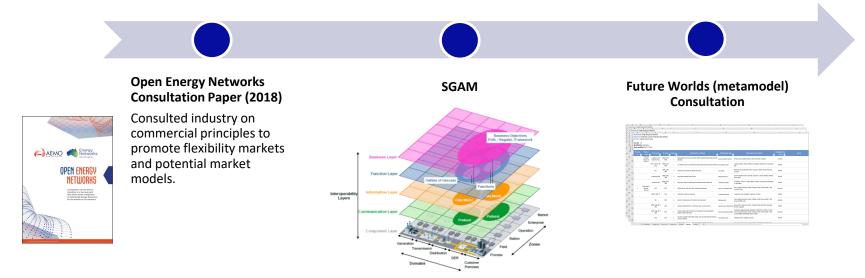


System security risks fall into four categories...

	Description	Exposure and Timing	Risk
Behaviour during disturbances	DER may disconnect or cease generation following power system disturbances.	Already aggregate behaviour of Solar PV is visible during power system events. Standards and connection agreements need to be updated to address issues	High
Dispatchability	There is no technical pathway to actively manage distributed Solar PV in the system	2020s However, the aggregated Solar PV capacity in the NEM is already larger than the largest generator.	High
Emergency Frequency Control Schemes	UFLS becoming less effective as Solar PV penetration increases	Already an issue in high Solar PV output periods in Distribution Network.	High
System Restart	SRAS provided by large, synchronous units, but requires stable load. Solar PV can reduce load available.	May be periods where inadequate load is available, further analysis required.	Medium

The evolved electricity system

In the evolved electricity system, electricity can flow in a bi-directional manner, that is, flowing to consumers connected to the distribution network, or from the distribution network to the transmission network when generation from DER sources connected to the distribution exceeds customer demand in specific suburbs or substations.



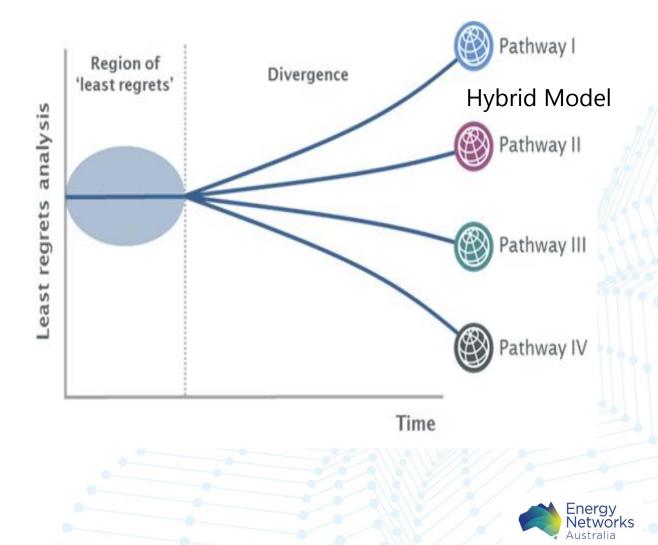
Required Capabilities – what?

Smart Grid Architecture Modelling

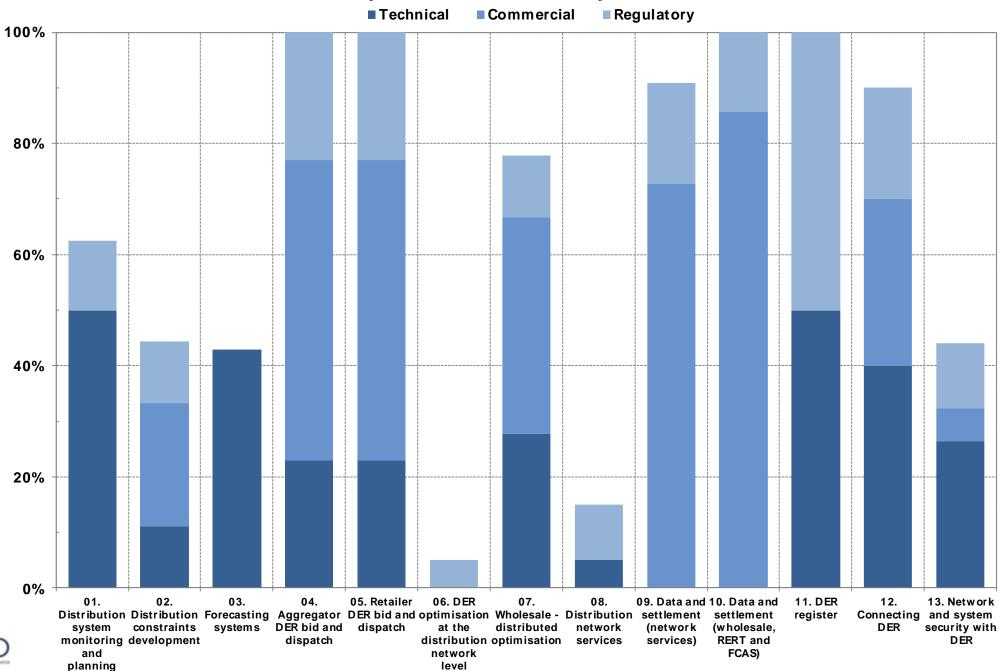
Further development of industry preferred market models through a series of industry workshops with consideration of additional functions and processes required for DSO.

The Smart Grid Architecture Model (SGAM) methodology is a way to represent a complex electricity system and break it down into is individual parts. It is three dimensional which allows complex aspects of the electrical network to be considered from a variety of perspectives

Required Capabilities and a Hybrid Model


Least regrets approach

The least regrets analysis explores the four framework pathways the electricity system may travel down to progress towards a DSO optimisation.


Least regret actions exist at the convergence of the four frameworks where commonality is present across them.

Least regret actions can be implemented over the short term, irrespective of the ultimate pathway that actually manifests with:

- Minimal risk of additional work requirements;
- Investments being sunk;
- Or value not being realised.

Energy Networks Australia

First Order Required Capabilities:

These are critical actions that must be undertaken to manage the current issues associated with DER Integration and will be required to support any of the model frameworks

MILESTONE 1:

DNSPs define network visibility requirements and network export constraints

- Define DNSP requirements for increased network visibility to maintain network operations within required parameters
- Define how to achieve increased network visibility to maintain network operations within required parameters (operating envelopes)
- Establish an iterative and targeted approach for the timing of investments required to provide network visibility to maintain network operations within required parameters

MILESTONE 2: DNSPs define communication requirements for operating envelopes

- Define protocols for operating envelope communication
- Establish a Australian standards and/or guidelines to support the establishment of operating envelopes

MILESTONE 3: DNSPs establish industry guideline for operating envelopes for export limits

Develop an Industry guideline that outlines the requirements and use of operating envelopes

MILESTONE 1: DNSPs define network visibility requirements and network export constraints

Define DNSP requirements for increased network visibility to maintain network operations within required parameters

- » Establish what information is required
- » Establish what time frames data is required
- » Establish where the data needs to come from

Define how to achieve increased network visibility to maintain network operations within required parameters (operating envelopes)

- » Define minimum technical requirements and system specifications for enhanced visibility, communication and co-ordination between the DER and DNSP/DSO
- » Define new operating envelopes for export limits stablish new minimum technical requirements for information, data and communication architecture

Establish an iterative and targeted approach for the timing of investments required to provide network visibility to maintain network operations within required parameters

- » Evaluate if customer losses are likely to outweigh network costs and therefore scope the case for a future network project
- » Define methodology of obtaining operating envelopes for network data
- » Review current methodology for calculation operating envelopes for export limits
- » Establish the methodology to calculate network constraints and develop the operating envelope from the technical network data.

Milestone 2: DNSPs define communication requirements for operating envelopes

Define protocols for operating envelope communication

- » Determine the appropriate format (e.g. syntax, semantics) of the data and its transmission method
- » Establish agreement across all industry stakeholders regarding the form of data and systems

Establish a Australian standards and/or guidelines to support the establishment of operating envelopes

- » Develop or adopt an Australian Standard on data management frameworks/protocols
- » Develop or adopt an Australian Standard on communication protocols/frameworks
- » Develop or adopt an Australian Standard on cyber security
- » Develop or adopt an Australian Standard on control system protocols
- » Develop or adopt an Australian Standard on interoperability

Define data access permissions

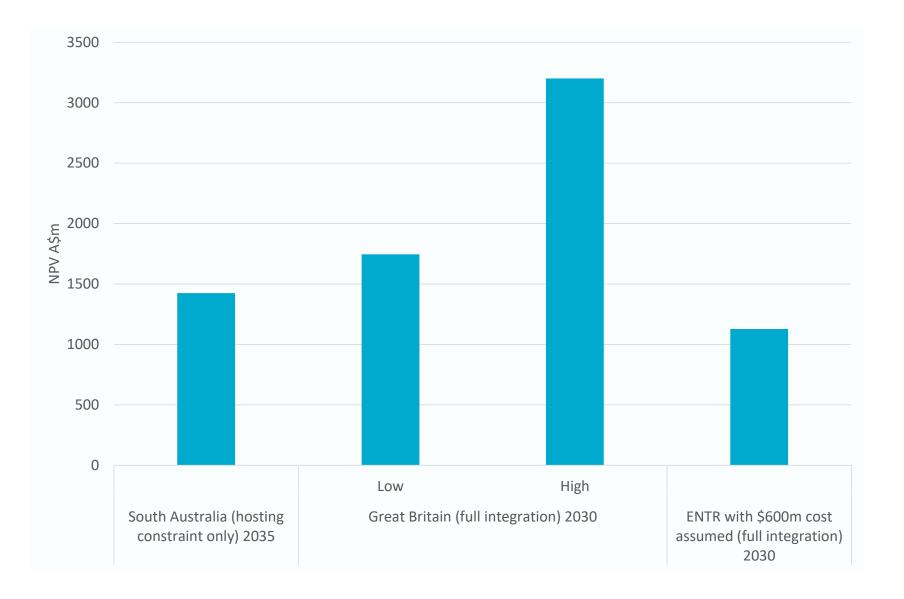
» Establish agreement across all industry stakeholders regarding access arrangements to data and systems

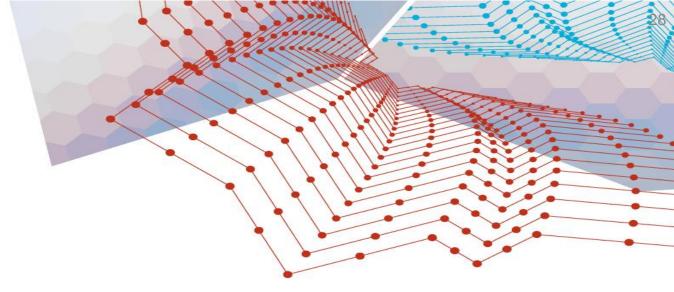
Milestone 3: DNSPs establish industry guideline for operating envelopes for export limits

Develop an Industry guideline that outlines the requirements and use of operating envelopes

- » Establish an agreed framework and principles for Australian Network Service Providers to for identification of network constraints, the establishment and communication of operating envelopes
- » Establish an industry guideline for operating envelopes based on the agreed framework and principles and the technical requirements identified in Milestones 1 and 2.

Required Capabilities: an iterative and targeted approach


• The Open Energy Networks project agrees that the frameworks for DER optimisation will be rolled out in a targeted way.


 Network monitoring and Operating Envelope calculation and communication will be needed as a required capability for all networks to determine hosting capacity.

	Low Hosting Capacity (<20%)	Medium Hosting Capacity (20% - 40%)	High Hosting Capacity (>40%)	
DER Low < 20%	Monitor	Operate (as today)	Operate (as today)	
DER Medium 20% - 40%	Optimise	Monitor	Operate (as today)	
DER High>40%	Optimise	Optimise	Monitor	

 Initially operating enveloped may be deterministic and static, but in order to optimise DER in the network, technical and market operators will require increasingly dynamic (system and local) envelopes

CBA frameworks | Paul Graham

2nd Order Actions & Trials

Common areas for action

Priority Area	Recommendation to be enacted	Description
Aggregator development	Define the aggregator role	Clarification around the role the aggregator will play in the DER optimisation and its relationship with the energy retailer is required
	Aggregator and energy retailer coordinate to develop portfolios of customers	Aggregators and energy retailers can begin to further engage with active DER customers to develop a range of services that it may offer the network or market operators.

Service description			Supply side Centralised generation Transfer within regions				Demand side					
					Stabilisu		abilising devices			resources		
System Attribute	Requirement	Service	Spatial level of need	Synchronous generator	Non- synchronous generator	Transmission and distribution networks	Grid reactor, grid capacitor, static VAR compensator	Static synchronous compensator	Synchronous condenser ¹	Large industrial, residential, commercial	Solar PV	Battery storage
	Provision of sufficient supply to match	Bulk energy	System wide	•	•	→	0	0	0	•	•	•
	demand from customers	Strategic reserves	System wide	• ^{2a}	O ^{3a}	→	0	0	0	•	О зь	О зь
	Capability to respond to large continuing changes in energy requirements	Operating reserves	System wide	● 25	O ^{3a}	→	0	0	0	•	O 3P	€ ³⁶
	Services to transport energy generated to customers	Transmission & distribution services	Local	• 4	• 4	•	•	•	•	• 4	Ð	Ð
	Ability to set frequency	Grid formation	Regional	•	● 5	•	0	0	0	0	0	● 5
		Inertial response	Regional	•	O 6	→	0	O 7	•	0 *	0	● ®
Frequency management		Primary frequency control	Regional	•	• 9	→	0	0	0	•	•	• 9
	within limits	Secondary frequency control	Regional	•	• 9	→	0	0	0	•	•	• 9
		Tertiary frequency control	Regional	•	• 9	→	0	0	0	•	•	• 9
		Fast response voltage control	Local	•	•	0	•	•	•	•	O	•
Voltage	Voltage Maintain voltages	Slow response voltage control	Local	•	•	0	•	•	•	•	0	•
management within limits	within limits	System strength	Local	•	0	→	0	0	•	0	0	0
System	Ability to restore the	System restart services	Local	•	O ¹⁰	→	0	0	0	0	0	O 10
restoration system	s ys te m	Load restoration	Local	•	•	⇒	•	•	•	•	O	O

AEMO Predicts that DER will be able to provide a number of technical services – although further work needs to be done to understand the characteristics of the services offered by DER.

1 This includes generators with ability to operate in synchronous condenser mode.

2a While many synchronous generators can provide energy reserves, some less firmtechnologies (solar thermal or pumped hydro storage) will be limited by the amount of energy storage they include.

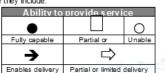
2b While many synchronous generators can provide flexibility services, coal generators are limited in their ability to provide such services.

3a Limited by duration for which service can be delivered.

3b Limited by duration for which service can be delivered; existing controllability is limited.

4 The provision of local voltage support from generators and loads can improve the network transport capability near their respective connection points.

5 Grid forming power electronic converters are available and have been proven on small power systems. Development of grid forming converters for large power systems is an emerging area of international research.


6 Some fast frequency response capabilities can provide emulated inertia response, but are not yet proven as a total replacement for synchronous inertia.

7 Static synchronous compensators with energy storage devices are being trialled as an emerging provider of inertial response.

8 Except for load relief.

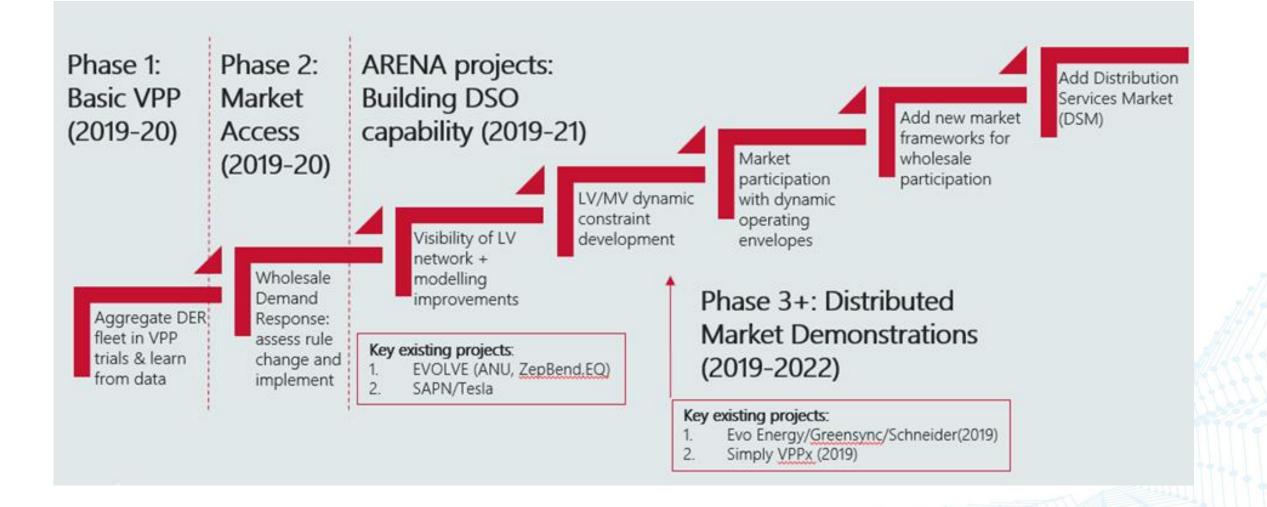
9 Includes fast frequency response capabilities.

10 System restoration services from variable non-synchronous generators is an emerging area of international research. If they are grid scale, batteries are likely to provide some system system. restoration support.

Note: Classifications are indicative of the general ability of each technology type. The extent to which technologies can provide each service must be assessed on the specifics of each individual

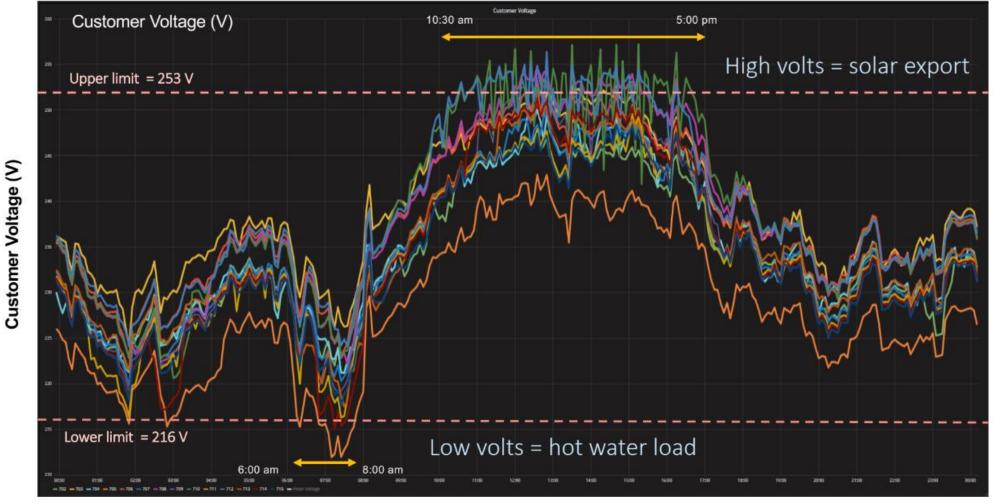
Common areas for action

Priority Area	Recommendation to be enacted	Description
Collaboration for	Aggregators, energy retailers and transmission customers forecast the long- term and short-term load and generation profiles of their customers	Aggregators and energy retailers have responsibility to provide to network and market operators granular load and generation profiles for their customers, both long-term trends and projections and short- term forecasts based on network and customer status
network forecasting and development	D-network, T-network and joint system investment plans are created	An extension of business as usual investment planning with greater emphasis on joint planning and requiring cost-benefit analysis of the use of network services vs traditional investment routes. Update the ISP to include both Distribution and Transmission Network investment recommendations.


Possible Key actions to Trial

Priority Area	Recommendation to trial	Description
	Aggregator and energy retailer apply to participate in the wholesale and FCAS services markets	All of the frameworks anticipate that DER, or aggregated portfolios of DER, will participate as a Market Ancillary Services provider, Market Customer or Market Generator.
<section-header></section-header>	Aggregator and energy retailer dispatch customers in response to market signals or contractual arrangements	The creation of communication infrastructure between aggregators, energy retailers and the market platform to facilitate the use of real-time dispatch signals is needed to unlock DER value A framework for dispatch at a Wholesale and Local Level will need to be developed including standard communication protocols and a common bidding process and common infrastructure that can be then transposed by Aggregators/Retailers to send signals to DER.

Possible Key actions to Trial


Possible Key actions to Trial

Priority Area	Recommendation to trial	Description
Network services market for DER	Adjust market rules to establish a network services market	A trial area for a distribution network services market could be established: to gauge the costs and benefits such a market would bring; to better understand the appetites of customers, aggregators, energy retailers and network operators to participate; and to determine best practice going forward
integration	Rules or guidance is created on the use of bilateral network services contracts out with the market platforms	Bilateral contracts for network service must be coordinated with market operations and rules established setting out any exclusions on the use of bilateral contracts out with an optimised market platform

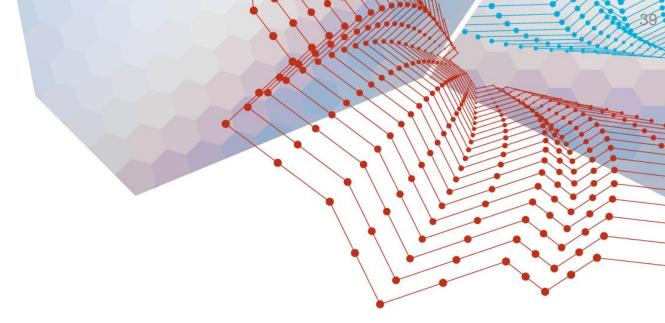
Network Voltage – how to value reactive power?

Time (hh:mm)

Networks Renewed: AusNet

Priority Area	Recommendation to trial	Description
<section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header>	AEMO dispatches the T-NSCAS, wholesale and FCAS services markets	AEMO may play a role in actively managing T-network constraints by trailing a network services market open to transmission customers

Priority Area	Recommendation to trial	Description		
Pricing signals	Pricing signals	Local pricing signals can be developed to manage customer behaviour out with a market or contractual obligation. Signals can be market driven (i.e. based on the wholesale price of electricity), network driven (i.e. based on local constraints for import / export) or a combination of both. Trials may be undertaken to better understand customer response to pricing signals and their position in the transition to a Distributed Market framework		

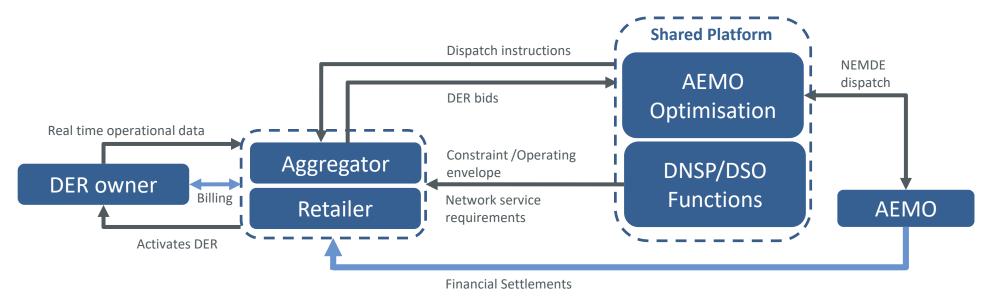


Required Capabilities and Recommendations - Timeline for action

2019	į	2020	2021	2022+
Required Capabilities-	Network Monitoring and co	onstraint development		
	ne communication requirements fo → Establish industry guideline		ort limits	Framework for the creation and communication of Networking operating Envelopes
Aggregator ro	e for DER Optimisation			
Define Aggregator Agg Cust	role omer, Service relationship	>		Aggregator recommendation
_ Integrating DE	R into the wholesale marke	et		
Trial participation	in Wholesale and FCAS	ER		Recommendation for DER integration
Imp	roving network and deman			
o o	ove load and generation forecasts Creating joint Transmission,	Distribution Investment plans	X	Distribution level Generation and Demand forecasting
	Define and Trial market f	or Network Services		
	Provide visibility of bilateral Net		smission Network Services	Market Design for Distribution and Transmission Network Services
Pri	cing signals for DER			
o				Recommended Dynamic DER Tariffs

Session 2

4th Model



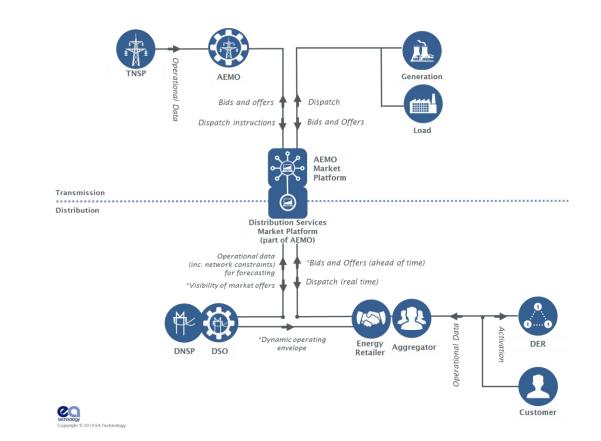
The 4th framework

Based on feedback from the Consultation, and outcomes from the workshops – the project has identified a fourth Hybrid Model that combines elements of each of the models. This has been included in the SGAM modelling by EA Technology.

A strawman model was developed which placed emphasis on **central optimisation (SIP)** combined with **DSO-DER engagement (TST)** with parts of the **iDSO**.

This strawman model was then actualised by testing against the 13 SIP and TST functions to produce the hybrid framework.

Hybrid Model

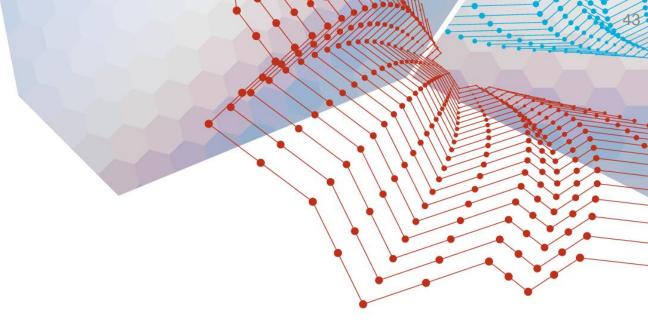

» AEMO manages market platforms that ensure efficient and effective operation through shared data and information streams, and coordinated functionality

Hybrid Model

» DSO manages the network and publishes network constraints and requirement for network services

A key component is the expanded "network services" market that enables economically efficient localised DERrelated support for optimised primary market activities

(e.g. VAR support to alleviate local network binding voltage constraints)

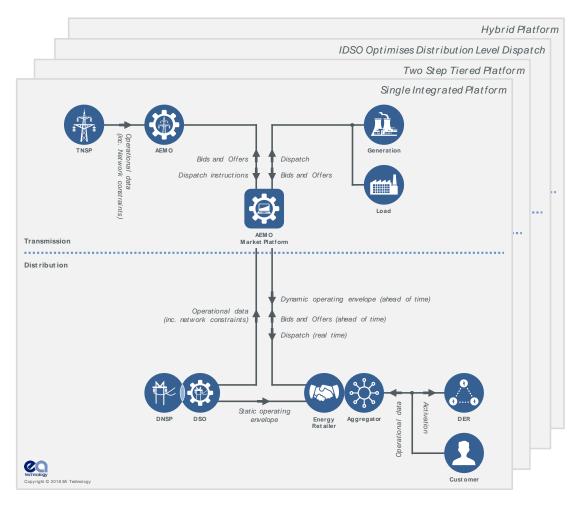

Session 3

Market model framework modelling

https://www.energynetworks.com.au/models

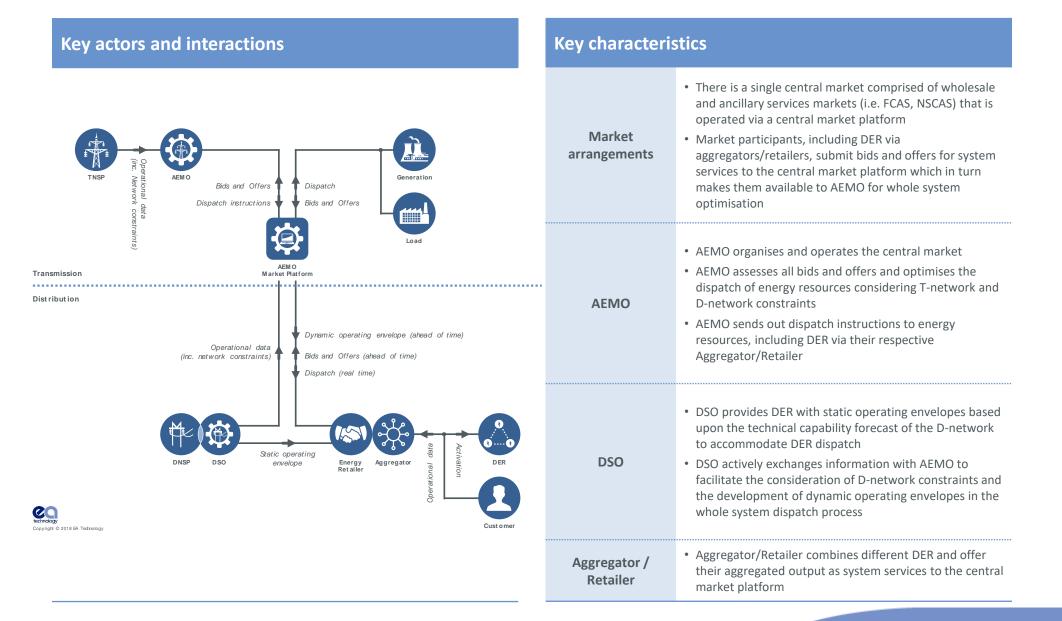
Contents

1	The four DER optimisation frameworks
	Single Integrated Platform, Two Step Tiered, Independent Distribution System Operator; Hybrid
2	Development of the DER optimisation frameworks
	13 functions; Industry workshops;
3	Smart Grid Architecture Model development
	SGAM overview; Live walkthrough; Use case comparison
4	SGAM analysis

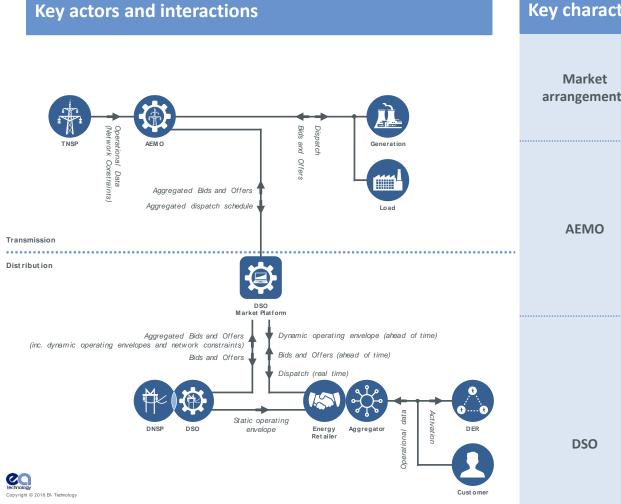

Foundational capabilities; Least regrets; Level of change; Pathways and indicators

Safer, Stronger, Smarter Networks

1. THE FOUR DER OPTIMISATION FRAMEWORKS

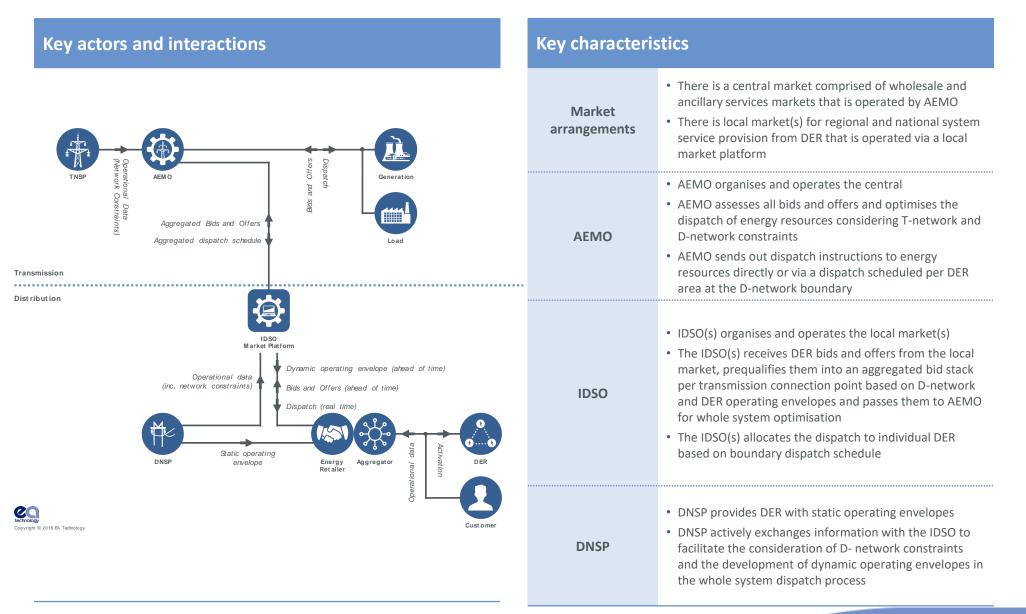

Distribution Level Optimisation frameworks

- Four distribution level frameworks have been developed by the OpEN-PRJ to facilitate the transition of DNSPs to DSOs.
- The frameworks broadly cover:
 - how the DSO accesses DER and the associated market arrangements;
 - how DER provides services to networks and markets
 - the extent of the DSO's relationship with AEMO



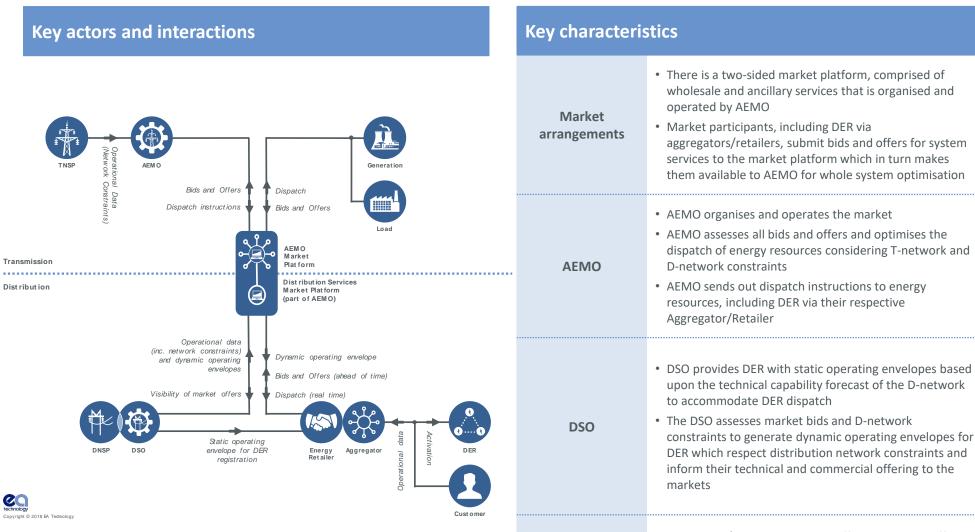
Single Integrated Platform framework

Two Step Tiered framework


Key characteristics

Market rangements	 There is a single central market comprised of wholesale and ancillary services markets that is operated by AEMO There is a local market(s) for regional and national system service provision from DER that is operated via a local market platform
AEMO	 AEMO organises and operates the central market AEMO assesses all bids and offers and optimises the dispatch of energy resources considering T- and D-network constraints AEMO sends out dispatch instructions directly to T-network energy resources and indirectly to D-network energy resources via a dispatch scheduled per DER area at the D-network boundary
	 DSO(s) organise and operate the local market(s) The DSO receives DSD bids and offers from the local

- The DSO receives DER bids and offers from the local market, prequalifies them into an aggregated bid stack per transmission connection point based on D-network and DER operating envelopes and passes them to AEMO for whole system optimisation
- The DSO allocates the dispatch to individual DER based on the boundary dispatch schedule
- The DSO procures, dispatches and settles the DER from aggregators/retailers for D-network constraint management via the local platform


Independent Distribution System Operator framework

Hybrid framework

technology

• Aggregator/Retailer combines different DER and offer their aggregated output as system services to the market platform

50

Aggregator /

Retailer

Framework comparison

	SIP	тѕт	IDSO	Hybrid
Advantages	 Full system orchestration Moderate regulatory change Standardisation of processes and procedures 	 DSO/DNSP control DER to actively manage D- network Potential lower barriers for entry and bespoke arrangements 	 IDSO removes perceived conflict of interest IDSO and DNSP control DER to actively manage D-network 	 Full system orchestration DSO/DNSP and AEMO coordinate D-network requirements (operating envelopes)
Disadvantages	 AEMO must interpret D- network requirements DSO/DNSP has no direct control over DER 	 Increased coordination required between DSO/DNSP and AEMO Perceived conflict of interest for DSO/DNSP DSO/DSNO has no market operation experience 	 New regulated entity Requires seamless IDSO and DNSP coordination High coordination required between IDSO and AEMO 	 Increased coordination required between DSO/DNSP and AEMO

Hybrid Key: **BOLD** – Common to SIP or TST; *Italic* – Enhanced from SIP or TST

2. DEVELOPMENT OF THE DER OPTIMISATION FRAMEWORKS

Functions and activities

The four frameworks were developed around the **13 functions and their associated activities** created by EA Technology in partnership with ENA.

No.	Function
1	Distribution system monitoring and planning
2	Distribution constraints development
3	Forecasting systems
4	Aggregator DER bid and dispatch
5	Retailer DER bid and dispatch
6	DER optimisation at the distribution network level
7	Wholesale - distributed optimisation
8	Distribution network services
9	Data and settlement (network services)
10	Data and settlement (wholesale, RERT, FCAS and SRAS)
11	DER register
12	Connecting DER
13	Network and system security with DER

Industry workshops

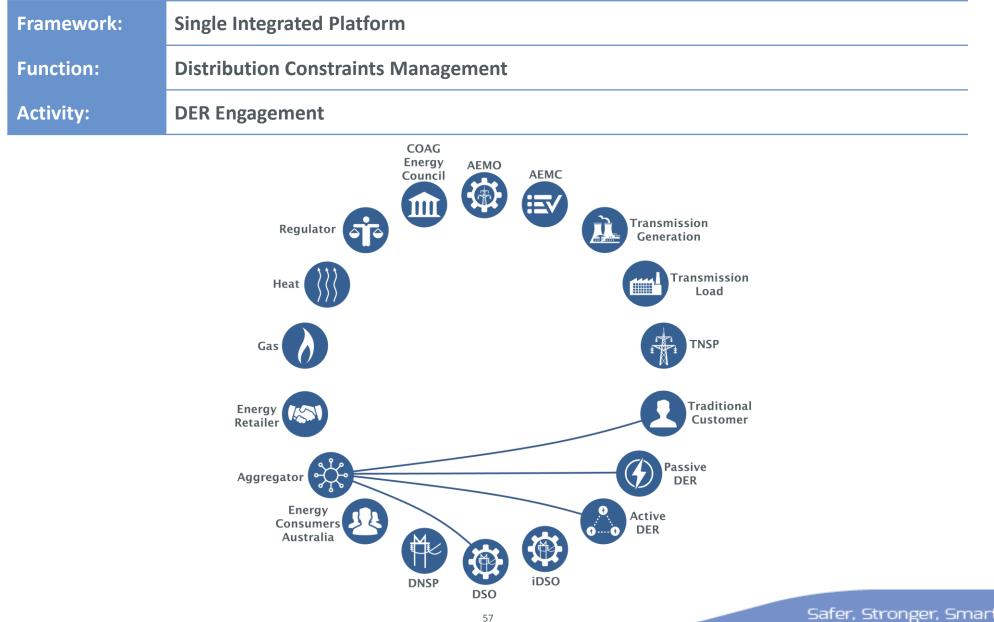
Industry workshops were initially held in Melbourne, Sydney and Perth to explore the SIP, TST and IDSO frameworks.

At workshops:

- For the particular 'Function'
- For the specified 'Activity'
- We asked participants to answer three questions
 - 1. Who is communicating with whom?
 - 2. What are they saying?
 - 3. How are they communicating (and how often)?

3. SMART GRID ARCHITECTURE MODEL DEVELOPMENT

Industry workshops


Industry workshops were initially held in Melbourne, Sydney and Perth to explore the SIP, TST and IDSO frameworks.

At workshops:

- For the particular 'Function'
- For the specified 'Activity'
- We asked participants to answer three questions
 - 1. Who is communicating with whom?
 - 2. What are they saying?
 - 3. How are they communicating (and how often)?

Q1. Who is communicating with whom?

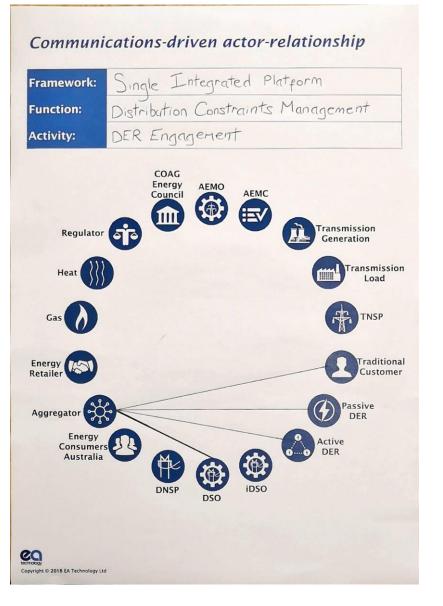
Q2. What are they saying?

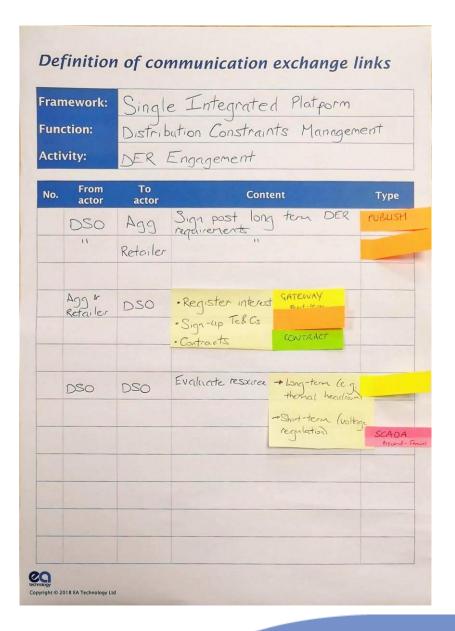
Framework:	Single Integrated Platform
Function:	Distribution Constraints Management
Activity:	DER Engagement

From actor	To actor	Information	Туре
DSO	Aggregator; Retailer	Sign post long-term DER requirements	
Aggregator; Retailer	DSO	Register interest for resource provision	
Aggregator; Retailer	DER	Offer conditions for sign-up	
DER	Aggregator; Retailer	Accept terms and conditions	
Aggregator; Retailer	DER	Contract DER resource	
	DSO Aggregator; Retailer Aggregator; Retailer DER Aggregator;	DSOAggregator; RetailerAggregator; RetailerDSOAggregator; RetailerDERDERAggregator; RetailerDERAggregator; RetailerDERAggregator; Retailer	DSOAggregator; RetailerSign post long-term DER requirementsAggregator; RetailerDSORegister interest for resource provisionAggregator; RetailerDEROffer conditions for sign-upDERAggregator; RetailerAccept terms and conditionsAggregator; RetailerDERContract DER resource

•••

Q3. How are they communicating (and how often)?


Framework:	Single Integrated Platform					
Function:	Distribution Constraints Management					
Activity:	DER Engagement					

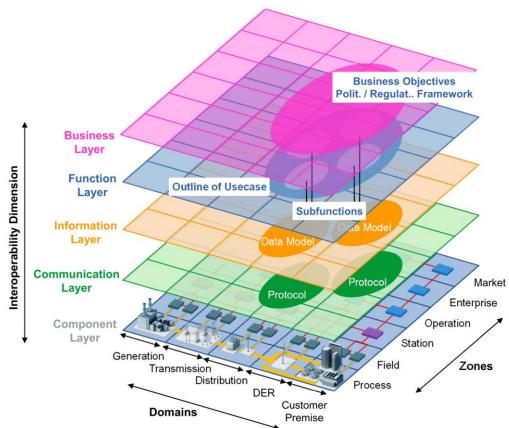

No.	From actor	To actor	Information	Туре	
1	DSO	Aggregator; Retailer	Sign post long-term DER requirements	Publish	
2	Aggregator; Retailer	DSO	Register interest for resource provision	Gateway	
3	Aggregator; Retailer	DER	Offer conditions for sign-up	Publish	
4	DER	Aggregator; Retailer	Accept terms and conditions	Gateway	
5	Aggregator; Retailer	DER	Contract DER resource	Contract	

•••

Application example

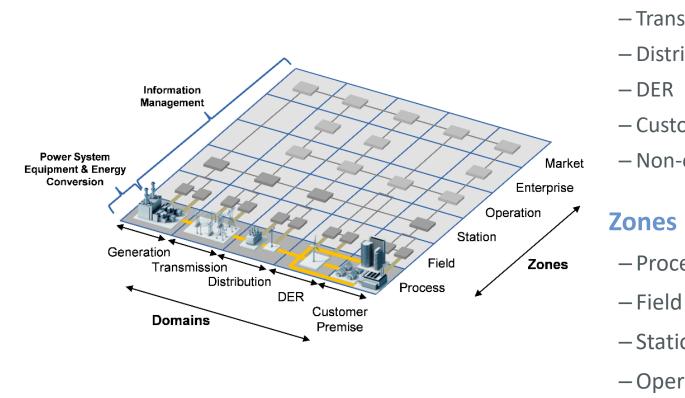
'Metamodel' creation

Workshop content was processed into 'metamodel' excel files to achieve consistency in the wording used and to standardise the descriptions of processes, activities and functions to a similar level of detail.


• > 2000 data entries across all templates

A.....

A		B (C D	E		F	G	Н	I	J
1 Frame	ework: Sinal A	e Integrated Platfo B	orm C	D	E	F	G	Н	I	J
3 1 Fr	ramework:	Single Integrated	Platform C	D	E	F	G	Н		
	1 Framewo	ork: Single Integra			_	· · · · · · · · · · · · · · · · · · ·				J
6 4 2			tem monitoring an	nd planning						
7 5 3		Gather network	data							
7 5	5 Version:									
9 7		l by: Ray Burns dified: 09/11/20	118							
8		unicu: 00, 11, 20								
9 0	Proces 9 no.	s Process	From actor	To actor	Step no	Information exchange	Information name	Information description	Communicatio n type 🖵	Notes
10	1	external impacts to	Academia; CER; COAG-EC; Reg	AEMO; DSO; TNSP	1	Demographic and socio-economic factors impacting long-term networ planning	^k Socio-economic factors	Census data, including trends in the movement of people	Contract	
2 11	11		CER; COAG-EC; JB; Reg	AEMO; DSO; TNSP	2	Government policy and initiatives impacting long-term network planning	19 Government policy	Carbon strategy: energy efficiency standards; generation mix transition plan	Publish	
12 13	12		Gas	AEMO; DSO; TNSP	3	Long-term gas usage and uptake forecasts	Gas usage	Infrastructure development plan: Capacity (volume and/or flow rate), Location	Publish	
13 14	13		Academia; BOM	AEMO; DSO; TNSP	4	Long-term weather forecast data	Weather forecast	Extreme weather events: drought, heatwave, storms; Rainfall; Sunshine hours; Wind	Publish	
14	14		Academia; EM	AEMO; DSO; TNSP	5	Long-term trends in technology development and deployment	Technology trends	Technology costs; EV uptake; Battery uptake; Upcoming developments in technology	Publish	
15 16 1	2	Long-term D- network forecast	DSO	DSO	۱	Gather historic data from DSO monitoring equipment	Historic D-network data	Active power, Reactive power, Voltage; Current; Power quality; Time; Location; Other	Cateway	
16 17 1	16		A-DER; P-DER; TC	DSO	2	D-network connection requests	Connection request	Connection type; Capability; Capacity; Location	Publish	
17 18 1	17		мс	DSO	3	Historic metering data of D-network end-customers	Metering data	Active power; Reactive power; Voltage; Current; Power quality; Time; Location (NMI); Other	Gateway	
18 19 1	18		A-DER; Agg; ER; P- DER	DSO	4	Technical characteristics of D-network end-customer assets	End-customer characterist	Load assets; Ceneration assets; Storage; Power electronics, including IC ¹ inverter capability	Publish	
19 20 1	19		A-DER; Agg; ER; P- DER	DSO	5	Forecast long-term D-network end-customer load and generation profiles within entitlement	End-customer data profile	Connection agreement and regulatory entitlement to import / export; s Active power, Reactive power, Voltage; Current; Power quality; Time; Location (NMI); Operational impacts; Other	Gateway	
20	20		DSO	DSO	6	Develop updated internal forecasting tools incorporating DER impacts on the D-network	Forecasting tools	Hardware and/or software solution	Publish	
		1	1			Forecast long term D network and austernationart and auport		Active power Reactive power Veltage: Current: Bower quality: Time:		
		EA Technology	Change Log	Actors Key	Comms Key	Function Activity I Activity II +		E 4		

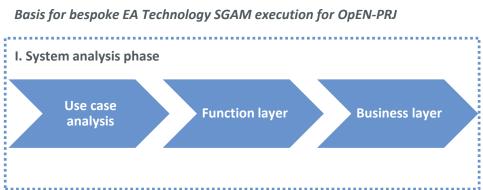

Smart Grid Architecture Model (SGAM)

- Interoperability layers
- Business layer: provides a business view on the information exchange related to Smart Grids. Business objectives, capabilities and processes can be mapped on this layer.
- Function layer: describes functions and services including their relationships from an architectural viewpoint.
- Information layer: describes information objects being exchanged and the underlying data models.
- Communication layer: describes protocols and mechanisms for the exchange of information between components.
- Component layer: physical distribution of all participating components including power system and ICT equipment.
- Domains
- Electric energy conversion chain
- Zones
- Hierarchy of power system management

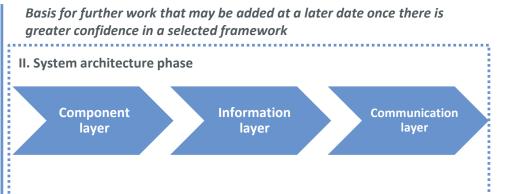
Smart grid plane

Domains

- Generation
- Transmission
- Distribution
- Customer premises
- Non-electrical vectors


- Process
- -Station
- Operation
- Enterprise
- Market

SGAM development methodology

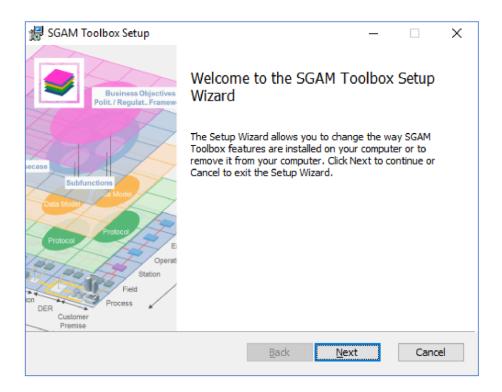


SGAM development process

- Aims to define the system and its functional requirements
- Focus is on the required functional specification of a model rather than on technical or physical solutions
- Describes business actors, their objectives and their interactions

Complete

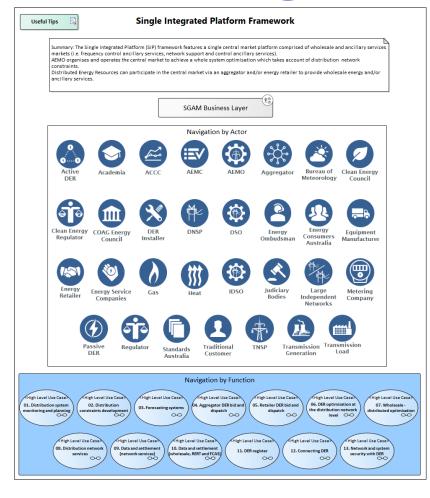
- Aims to map the functional requirements of the system into a high-level architecture
- Describes the main physical subsystems and their interactions without detailing their inner composition.
- May be developed following framework selection



The software tool we used

Enterprise Architect

SGAM Toolbox



- "Enterprise Architect" from Sparx Systems
- Originally Desktop Edition Standard License
- Moving to Corporate Edition
- http://sparxsystems.com/

- "SGAM-Toolbox" from the 'Centre for Secure Energy Informatics' at the Salzburg University of Applied Sciences
- <u>https://sgam-toolbox.org/download</u>

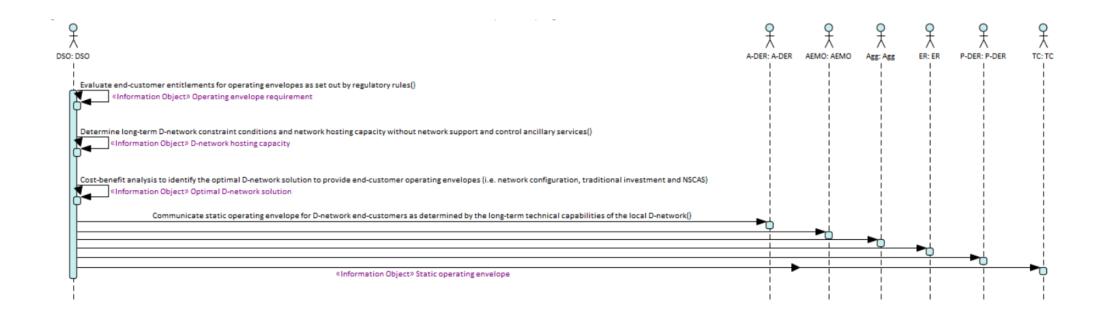
SGAM walkthrough

Model Demo

The SGAM is developed through 'use case analysis' where each of the DSO framework options is selected and analysed in detail. We will explore the following use case:

- Framework: Single Integrated Platform
- Function: 4. Aggregator DER bid and dispatch
- Activity: 3. Aggregator market engagement
- Process: 1. Market registration

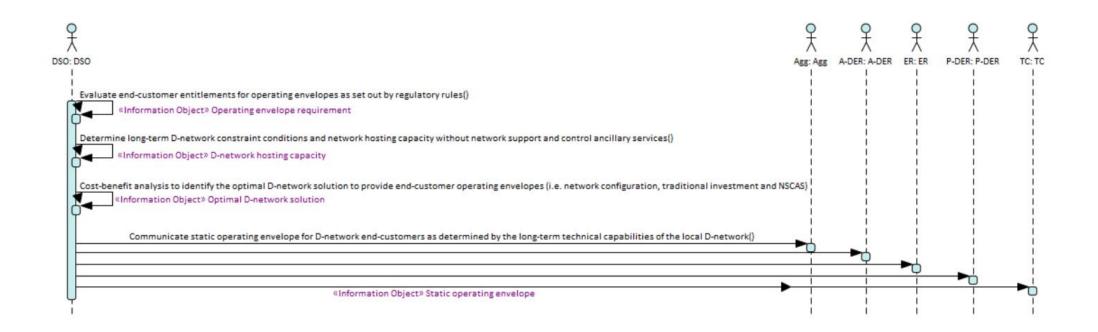
Navigation of:


- The landing page
- The business layer diagram
- The actor view diagram
- The HLUC (function) diagram
- The PUC (activity) diagram
- The sequence diagram
- The activity diagram

Use case comparison - SIP

The SGAM is developed through 'use case analysis' where each of the DSO framework options is selected and analysed in detail. We will explore the following use case:

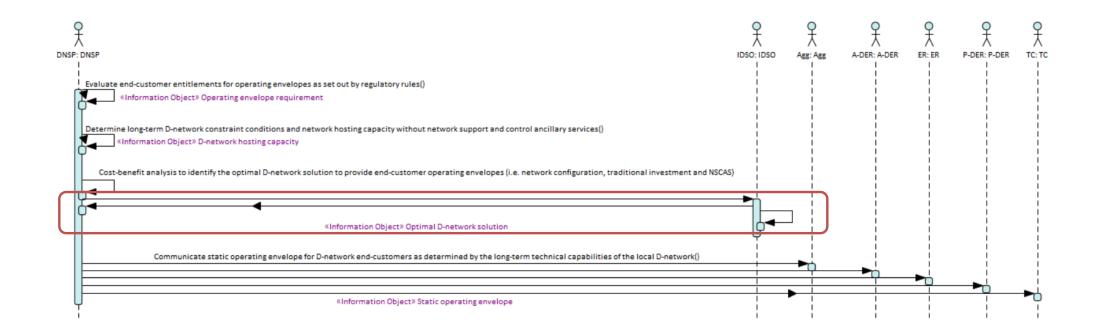
- Function: 6. DER optimisation at the distribution network level
- Activity: 1. Optimise operating envelopes of distribution network end-customers
- Process: 2. Communicate operating envelopes to D-network end-customers (long-term)



Use case comparison - TST

The use case:

- Function: 6. DER optimisation at the distribution network level
- Activity: 1. Optimise operating envelopes of distribution network end-customers
- Process: 2. Communicate operating envelopes to D-network end-customers (long-term)

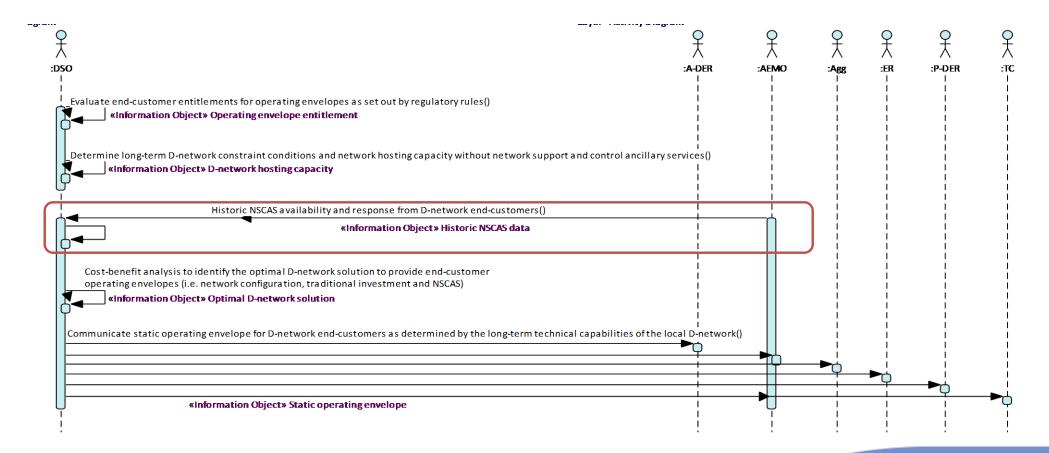


Use case comparison - IDSO

The use case:

- Function: 6. DER optimisation at the distribution network level
- Activity: 1. Optimise operating envelopes of distribution network end-customers
- Process: 2. Communicate operating envelopes to D-network end-customers (long-term)

69

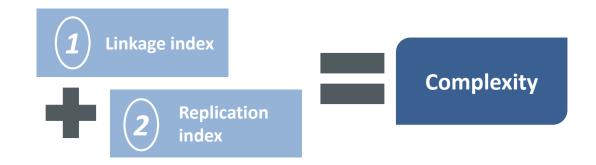


Safer, Stronger, Smarter Networks

Use case comparison - Hybrid

The use case:

- Function: 6. DER optimisation at the distribution network level
- Activity: 1. Optimise operating envelopes of distribution network end-customers
- Process: 2. Communicate operating envelopes to D-network end-customers (long-term)



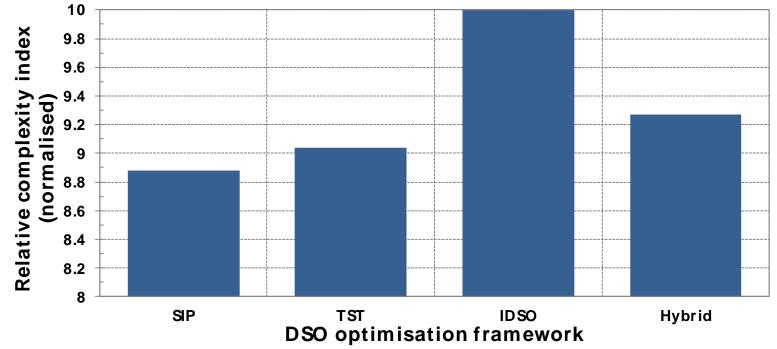
4. SGAM ANALYSIS

Level of change

We can assess the level of change needed to establish each DSO framework by evaluating the **relative complexity** of each.

This is determined by assessing the 'linkage index' and 'replication index' of each step within the SGAMs.

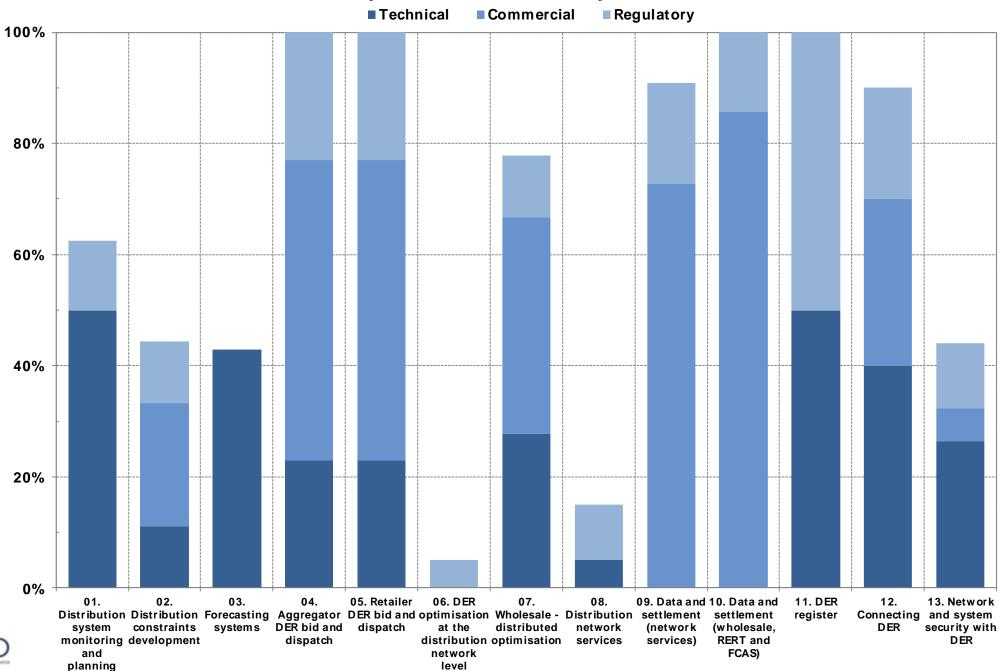
Linkage index


- Measures the nature of the communications between actors in each model step
- Real-time exchange of data is inherently more complex than publishing a statement
- Publish (1); Contract (2); Gateway (3); SCADA (5)

Replication index

- Measures the **volume of communication** between actors in each model step
- Communicating data to millions of customers is more complex that conversing with a single entity
- From single actor entities like AEMO (1) to traditional customers (7)

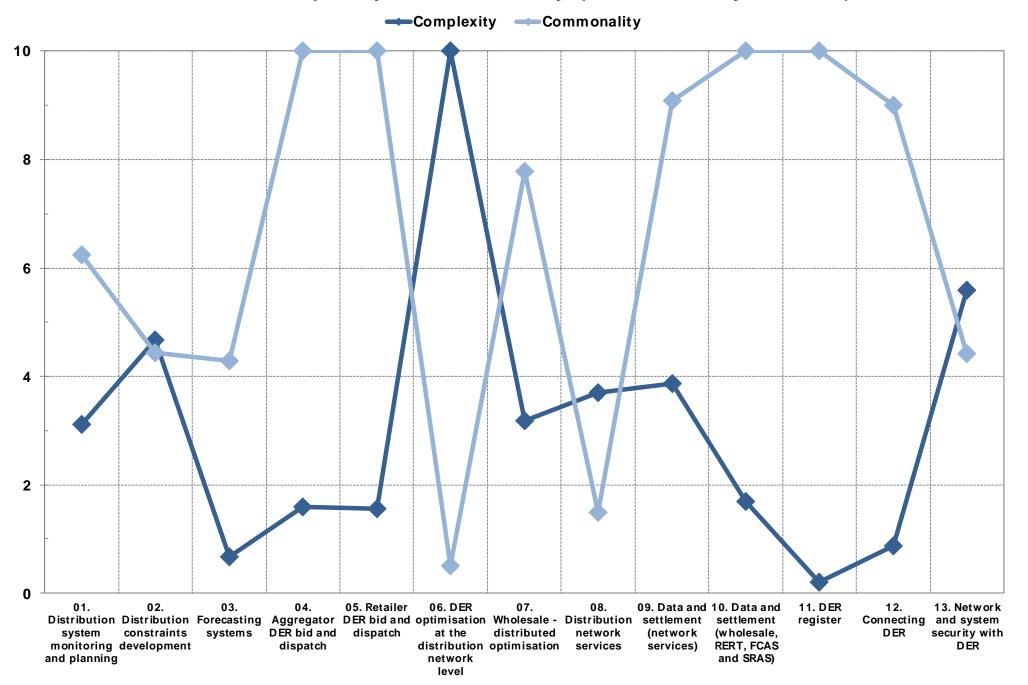
Framework complexity


Relatively stable across frameworks

- 1. SIP Lowest complexity as closest to current practice
- 2. TST Raised complexity due to requirement for new market platform
- 3. Hybrid Raised complexity due to requirement for new market platform and increased AEMO-DSO communication
- 4. IDSO Highest complexity due to requirement for new market platform and new regulated entity

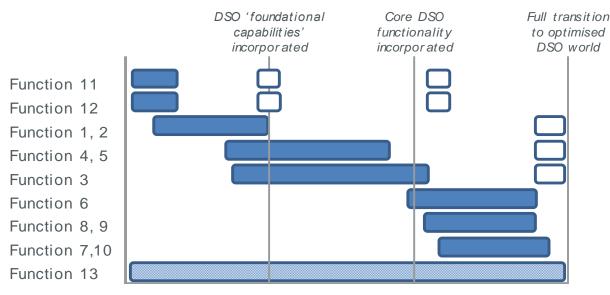
High complexity should not exclude a framework as it may correspond with greater value to customers.

73



74

Energy Networks Australia


Relative complexity vs commonality (normalised by function)

Conceptual Pathways forward

- Foundational capabilities provide a starting point
- Least regret recommendations give insight into low risk areas to pursue and explore

But, in order to embark on the full system transition it will be necessary to make key choices as soon as possible to be prepared for the future. i.e. preferred framework, the pathway forward...

Indicative Implementation Pathway

Key

New capabilities decided and implemented

Capabilities revised and updated

A workstream responsive to related developments elsewhere

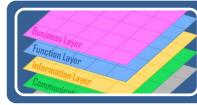
1 Distribution system monitoring and planning
2 Distribution constraints development
3 Forecasting systems
4 Aggregator DER bid and dispatch
5 Retailer DER bid and dispatch
6 DER optimisation at the distribution network level
7 Wholesale - distributed optimisation
8 Distribution network services
9 Data and settlement (network services)
10 Data and settlement (wholesale, RERT, FCAS and SRAS)
11 DER register
12 Connecting DER
13 Network and system security with DER

76

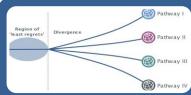
Pathway indicators

To understand and track progress it is important to be aware of:

The start point	The end point	Eactors and influences
 The current uptake level of DER The network and asset characteristics and capabilities Trialled solutions 	 The forecast point prior to which intervention will be required in order to maintain reliable and safe supply 	 National / global economic circumstance DER technology costs and availability Government policy and incentives


Although key decisions must be made to shape the way forward, the network transformation is a continuing and interactive process where each stakeholder's journey will be different and the direction of travel may change over time.

Stakeholders must be attuned to the latest industry data and milestones to understand how the transition is progressing and determine their path forward.



Summary

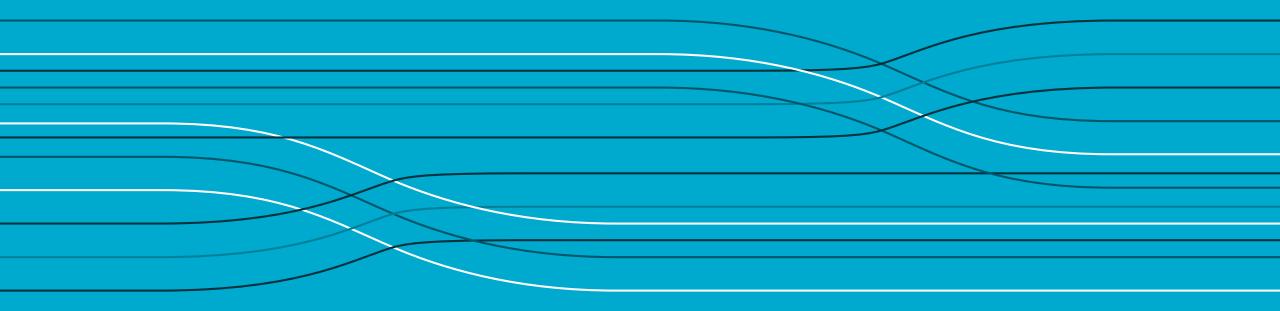
We have:

Developed and represented the four frameworks in Smart Grid Architecture Models

Explored commonality across the frameworks to identify actions to pursue in the near-term

Identified that to unlock full DER potential it is advantageous to select an end-state to transition toward

Engaged with industry and now encourage stakeholders to explore and interact with the SGAMs of the frameworks


78

Session 4

Cost-benefit analysis frameworks for DER integration

Cost-benefit analysis frameworks for DER integration

Open Energy Networks Workshop

Paul Graham | Chief Economist Energy March 2019

ENERGY www.csiro.au

Outline

- Frameworks, recommendation
- BAU / counterfactual design
- Findings from existing studies
- Implications for timing
- Next steps

Motivation / research questions

- DER integration will require new costs are the benefits worth it at a whole of system level?
- If there are positive net benefits, how soon do we need to establish the system?
- How do we choose between different systems/models?
- New information: new CBA studies; updated DER projections

Frameworks: US approach

California

Bulk

New York

- Avoided Generation Capacity Costs, including Reserve Margin
- Avoided Energy
- Avoided Transmission Capacity

Infrastructure and O&M

- Avoided Transmission Losses
- Avoided Ancillary Services
 Distribution System
 - Avoiding Distribution Capacity Infrastructure
 - Avoided O&M Costs
 - Avoided Distribution Losses

Reliability/Resiliency

- Net Avoided Restoration Costs
- Net Avoided Outage Costs

External

- Net Avoided Greenhouse Gas Emissions
- Net Avoided Criteria Air Pollutants
- Avoided Water Impacts
- Avoided Land Impacts
- Net Non-Energy Utility Benefits

Avoided T&D

- Sub-Transmission/Substation/Feeder
- Distribution Voltage/Power Quality
- Distribution Reliability/Resiliency
- Transmission

Avoided Generation Capacity

- System and Local Resource Adequacy
- Flexible Resource Adequacy Avoided Energy

Avoided Greenhouse Gas Emissions Avoided Renewable Portfolio Standard¹ Avoided Ancillary Services

Renewable Integration Costs

Societal Avoided Costs

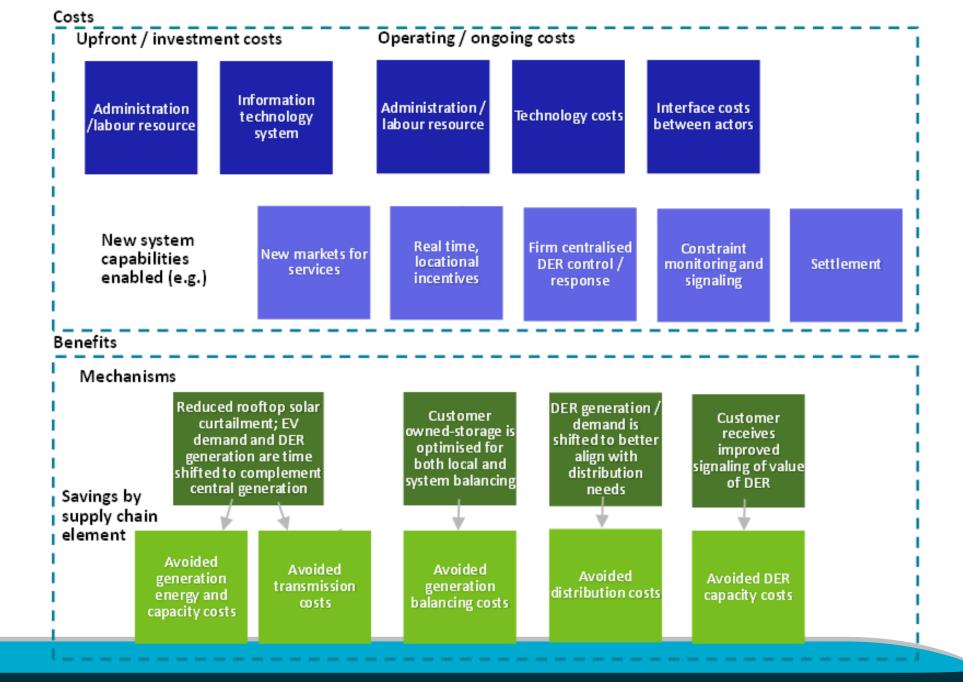
• Public Safety Costs

Frameworks: applied analysis

Study	Benefits included	Costs included
Electricity	Avoided generation expenditure	Not applicable
Networks	Avoided distribution expenditure	
Transformati	Avoided transmission expenditure	
on Roadmap	Avoided balancing solution capacity under	
(CSIRO)	high VRE	
UK Open	Avoided transmission investment	Technology costs
Networks /	Avoided distribution investment	Resource costs (skills, time volume)
(Baringa	Reduced balancing costs	Business transition costs
Partners)	Avoided generation investment	Interface costs between actors
	(all modified by certainty of response,	
	degree of control and participation)	
SAPN LV	Avoided generation expenditure	LV network monitoring and
management		signalling of hosting capacity
business case		constraints
Integrated	Avoided generation expenditure	Not applicable
System Plan	Avoided transmission expenditure	
(High DER)		

Recommended approach to DER integration CBA

- DER integration creates impacts all along the supply chain we need to capture them without making the analysis intractably large.
- Exclude:
 - Externalities on both the cost and benefit side associated with environmental impacts (e.g. emissions, land and water)
 - Safety-related costs or benefits
 - Outage and restoration-related costs or benefits
- Approach to DER equipment costs depends on BAU (e.g. degree of VPP readiness) and quality of incentives



Recommended approach to DER integration CBA

Transmission (ISP findings)

- The ISP 2018 found that state interconnectors were still required regardless of level of DER – to connect diverse wind
- However, the level of DER impacts the level of interstate connections required for large scale solar
- Not likely to be a large source of avoided costs but still warrants inclusion

Questions for group

- Are there elements that the proposed CBA framework should emphasise more?
- Are there elements that the proposed framework should de-emphasise?

BAU / DER non-integration definition

- Meaning: no centralised attempt to coordinate DER
- Aggregators exist but those activities are impacted by the uncontrolled activities of other DER owners
- Customers, Retailors, Networks and AEMO will respond in other ways to DER uptake impacts

Updated DER projections, ESOO 2018

		Residential rooftop solar	Commercial rooftop solar	Residential battery storage	Commercial battery storage	Electric vehicles	Electric vehicle p.a. electricity demand
		MW	MW	MWh	MWh	No.	GWh
2020	Slow	7842	2094	647	27	3,966	31
	Moderate	9795	3257	1100	69	10,688	55
	Fast	10183	3840	1161	82	18,342	84
2030	Slow	9981	4009	1622	72	456,318	1506
	Moderate	13869	6104	3362	243	1,716,214	5761
	Fast	15199	7861	5424	456	3,242,170	12056
2040	Slow	12661	5651	3127	193	4,973,668	15745
	Moderate	21300	9053	8794	868	7,164,739	24225
	Fast	28344	13397	16444	1833	10,019,327	39218
2050	Slow	19581	9301	5586	414	9,199,969	29318
	Moderate	26009	12978	17877	2138	11,032,809	37947
	Fast	38426	20801	29778	4083	15,015,551	59953

Impact of DER adoption

AEMO projections of minimum demand indicate risk of negative state demand (90% POE)

- South Australia
 - -2023 under the Slow scenario
 - -Neutral scenario in 2024
 - -2026 for the Fast scenario
- Queensland
 - -2031 under Slow scenario
- Victoria
 - -2034 under Slow scenario

Impact of DER adoption

AEMO projections of minimum demand indicate risk of negative state demand (90% POE)

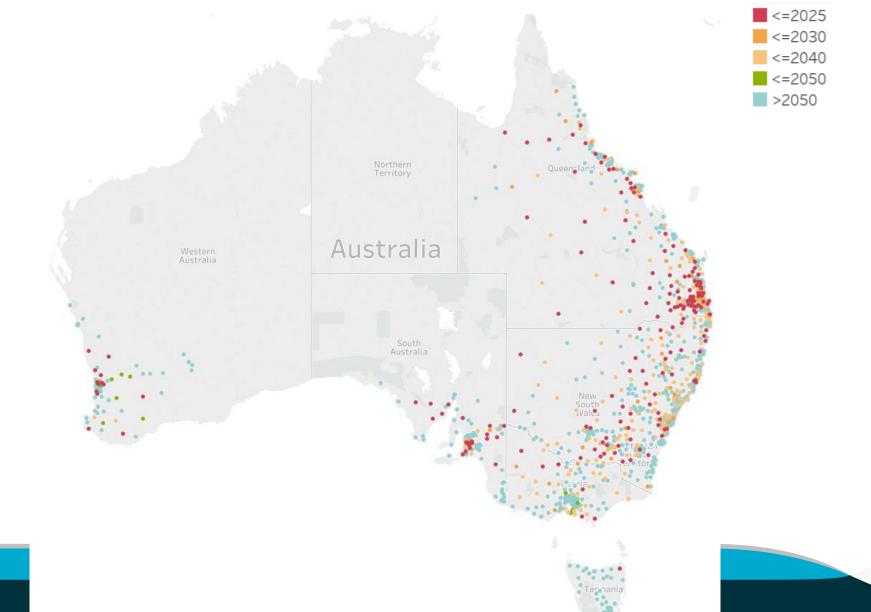
- South Australia
 - -2023 under the Slow scenario
 - -Neutral scenario in 2024
 - -2026 for the Fast scenario
- Queensland
 - -2031 under Slow scenario
- Victoria
 - -2034 under Slow scenario

How do you manage a system for outages where all electricity is supplied by uncontrolled plant?

Managing negative demand without DER central coordination

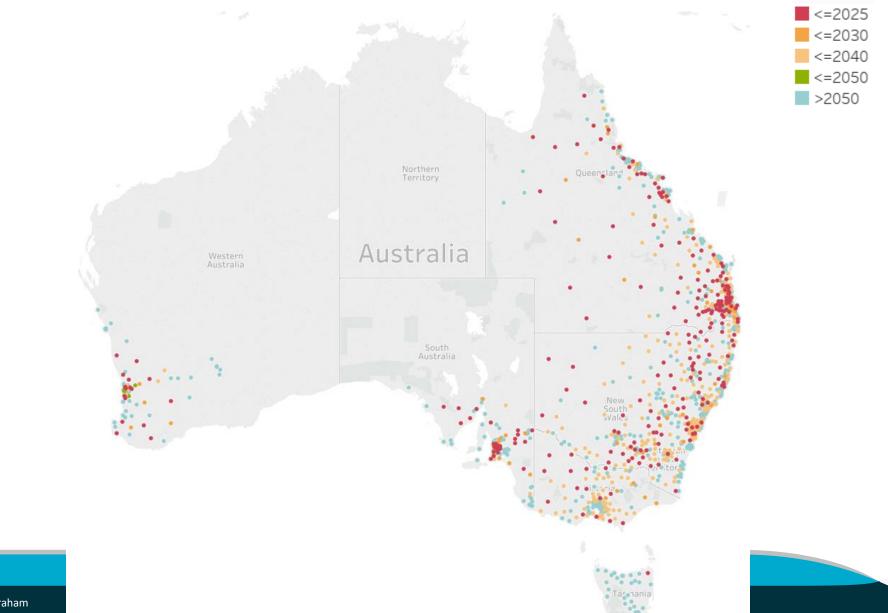
Some options on negative demand day in SA:

- Select ancillary services from a plant that is spinning but not supplying energy within the state
- Simultaneously importing energy into South Australia such as would be possible under the proposed second NSW-SA interconnector
- Purchasing some conventional demand management

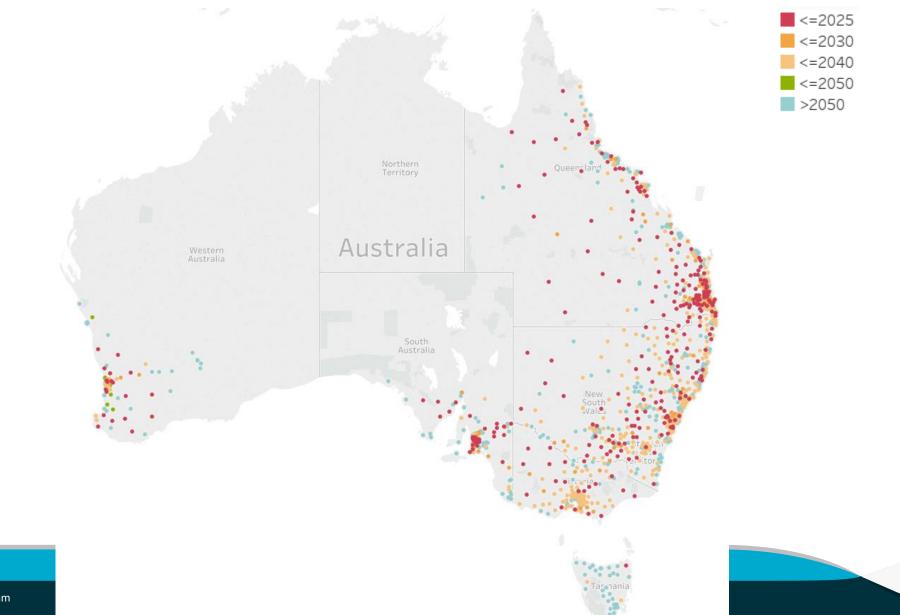

Impact of DER adoption

At around 40% solar penetration at the distribution level, limits in the capacity of the network will result in

- Widespread inverter tripping (voltage exceedance)
 - SAPN find this result even taking into account new inverter standards
- Potential for outages (thermal exceedance)
 More a risk from coincident battery operation
- CSIRO / ENTR also found that a zone substation will experience negative demand at this penetration

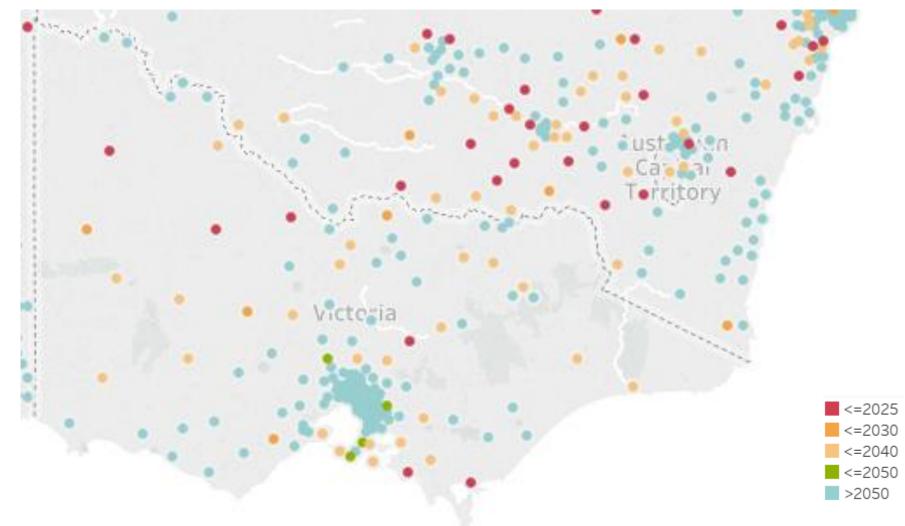

Period in which zone substation experiences negative demand: ESOO Slow

CSIRC

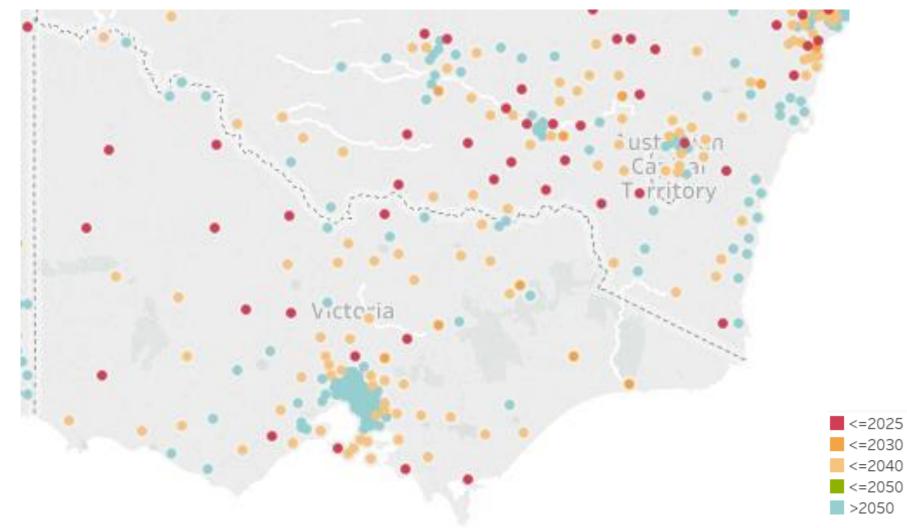

CBA frameworks | Paul Graham

Period in which zone substation experiences negative demand: ESOO neutral

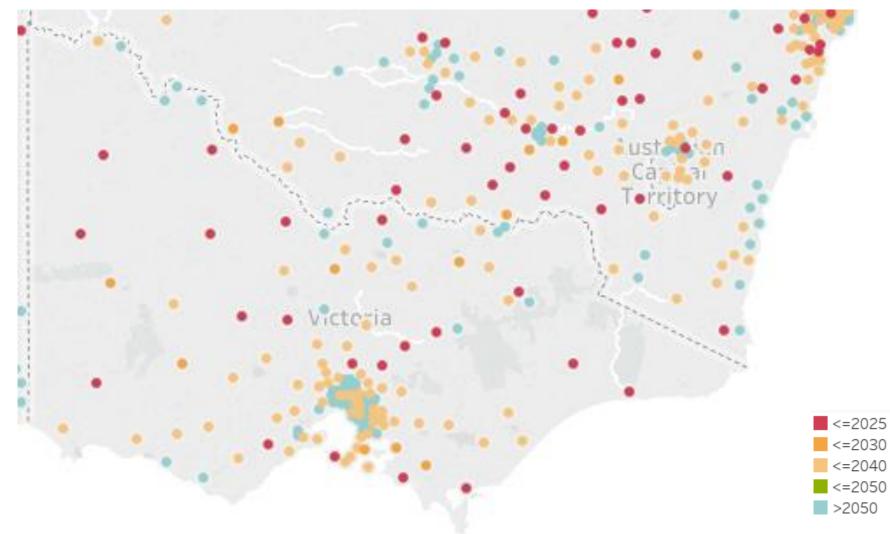
CSIRC


Period in which zone substation experiences negative demand: ESOO Fast

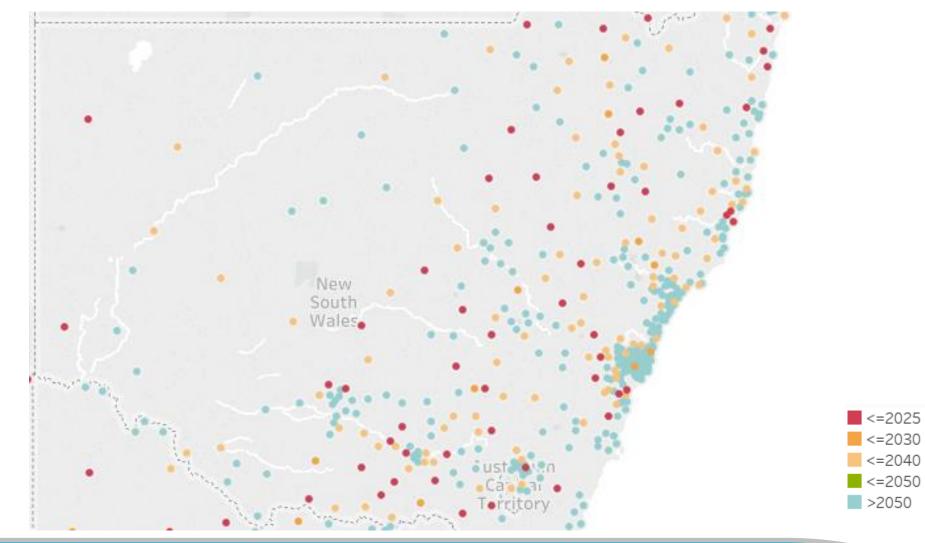
CSIRC


CBA frameworks | Paul Graham

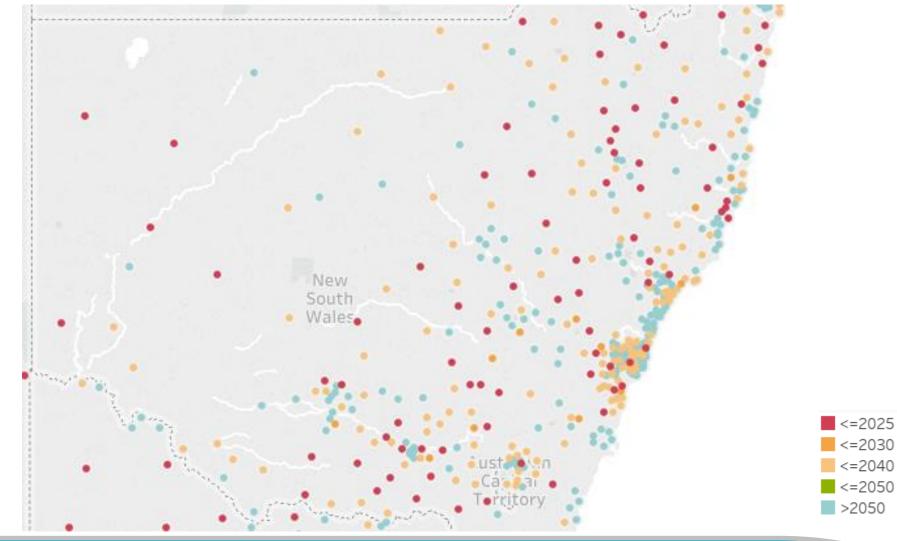
Period in which zone substation experiences negative demand: ESOO slow, Vic.



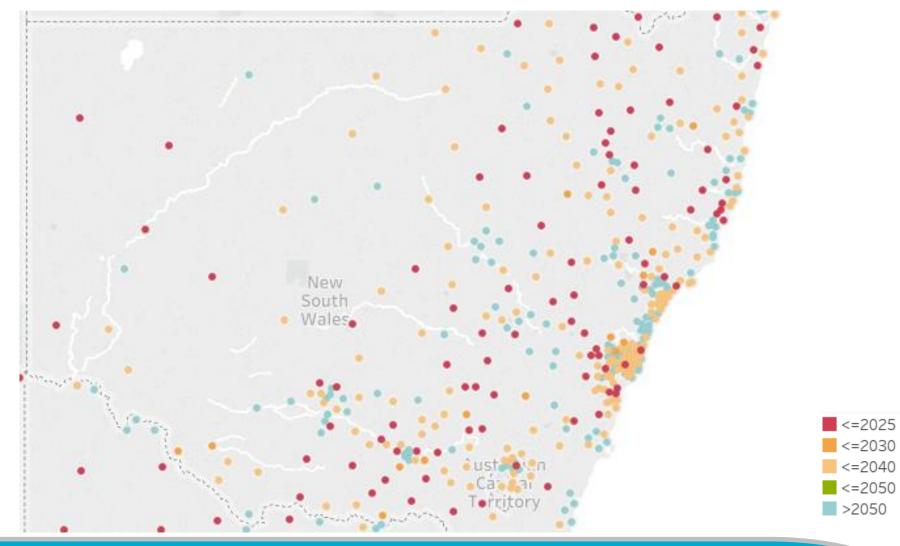
Period in which zone substation experiences negative demand: ESOO Neutral, Vic.



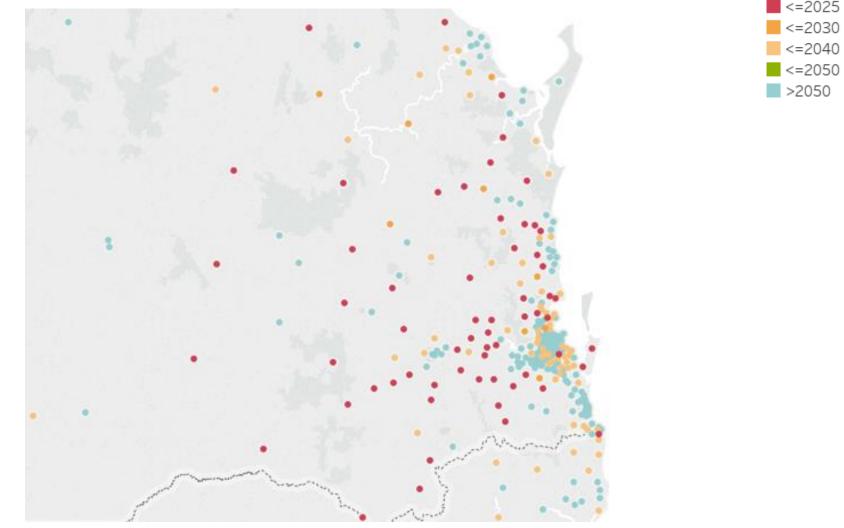
Period in which zone substation experiences negative demand: ESOO Fast, Vic.



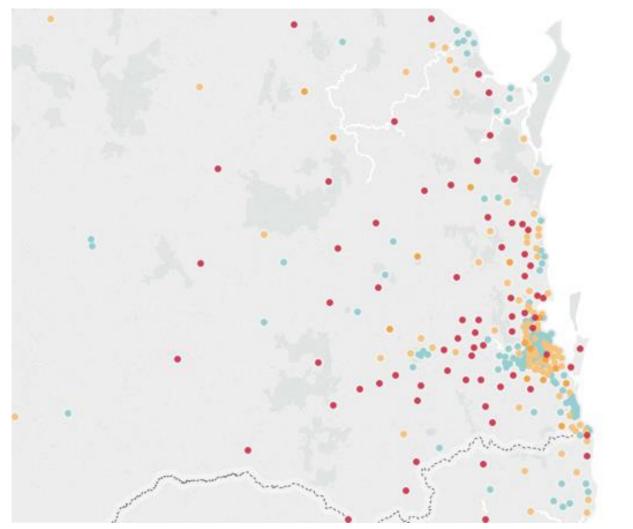
Period in which zone substation experiences negative demand: ESOO Slow, NSW



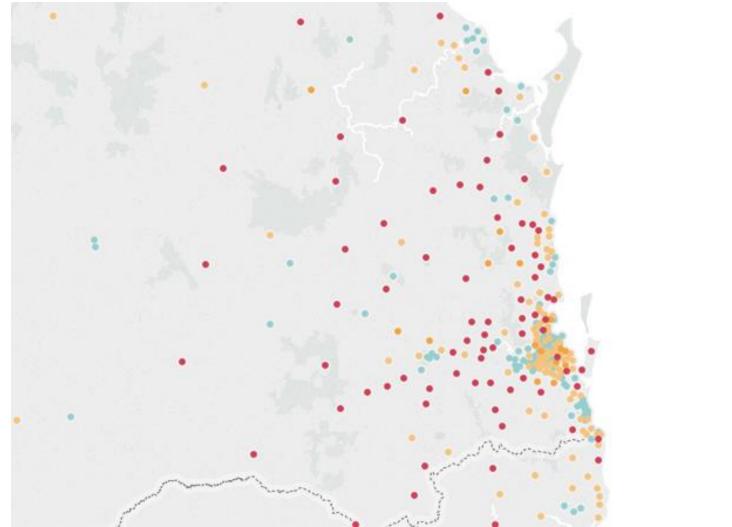
Period in which zone substation experiences negative demand: ESOO Neutral, NSW



Period in which zone substation experiences negative demand: ESOO Fast, NSW



Period in which zone substation experiences negative demand: ESOO Slow, SE Qld


Period in which zone substation experiences negative demand: ESOO Neutral, SE Qld

Period in which zone substation experiences negative demand: ESOO Fast, SE Qld

Distribution network responses to DER

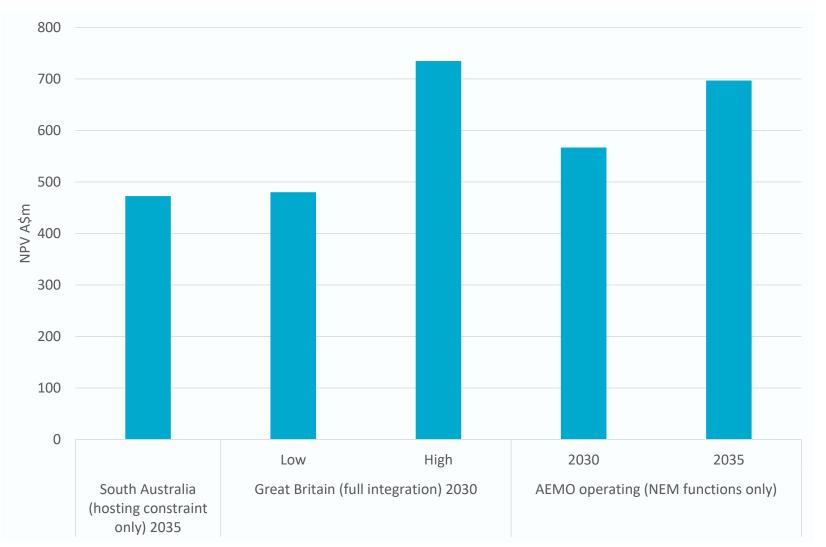
- Requiring new inverters to be installed with Volt-VAr response modes defined in AS4777.2
- Deploying hot water system demand to high solar output times (where available to the network)
- Offering tariffs which incentivise use of storage and diverse behaviour
- Managing voltage settings to the lower end of the range to provide more room for movement (note some states, such as South Australia, have already done this and so do not have the option to go lower)
- Capacity limits on solar (e.g. 5kW per phase)
- Smart meters at different levels of penetration

Should networks do more?

- It is not clear if the obligation to manage power quality implies obligation to enable or manage solar exports
 - -Limited appetite for network investment
- Managing solar (c.f. do nothing) has distributional impacts (i.e. fairness issues):
 - Export limit on new solar customers: gifts a property right to existing solar customers
 - -Complete ban on new solar: as above
- EV day time charging holds some long term promise

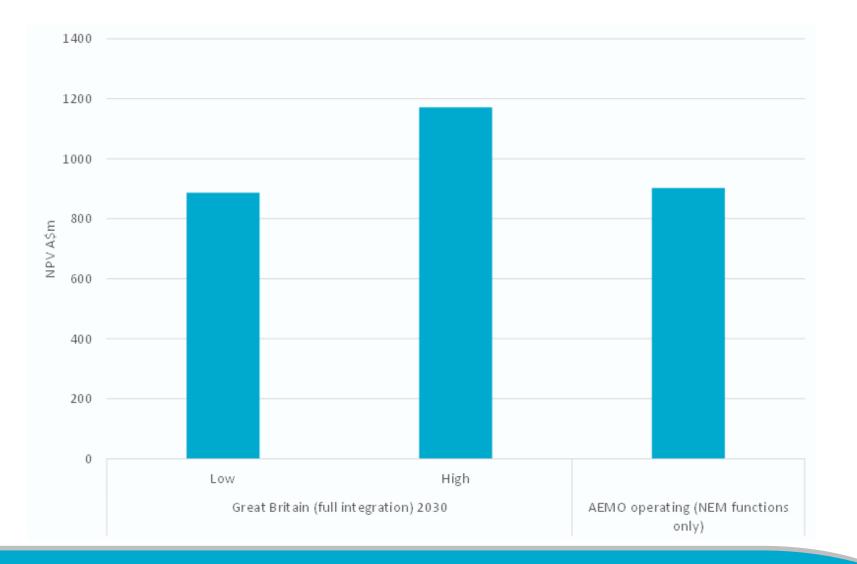
Questions for group

Is this a reasonable view of the BAU / non-centrally integrated DER world?

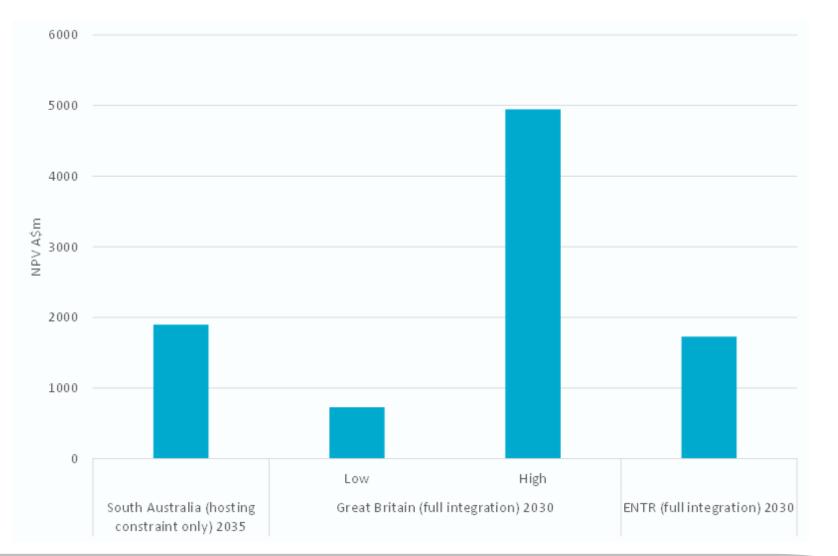


Review of existing CBA results

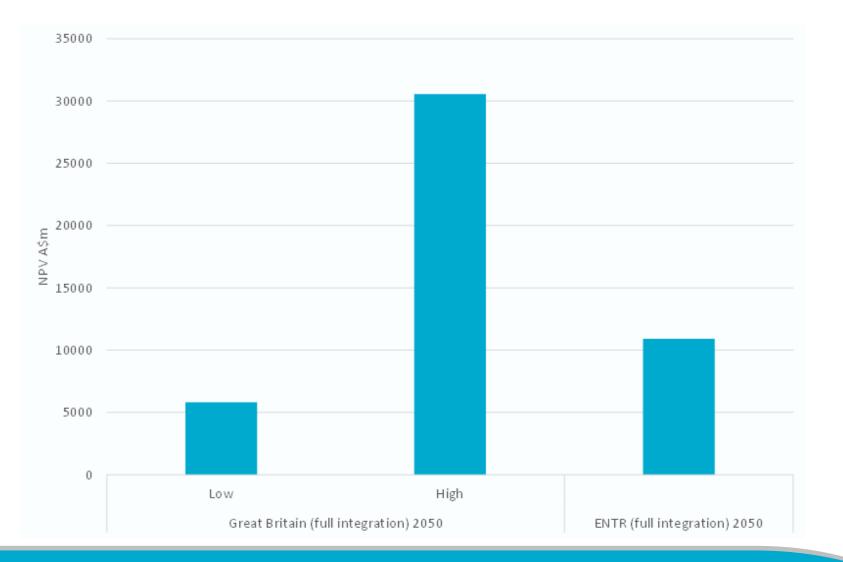
- Studies: ENTR, SAPN LV business case & UK Open Networks
- All converted to Australian dollars NPV
- Scaled results to an equivalent Australian-sized electricity system
 - -Benefits scaled by consumption
 - -SA costs by customer connections



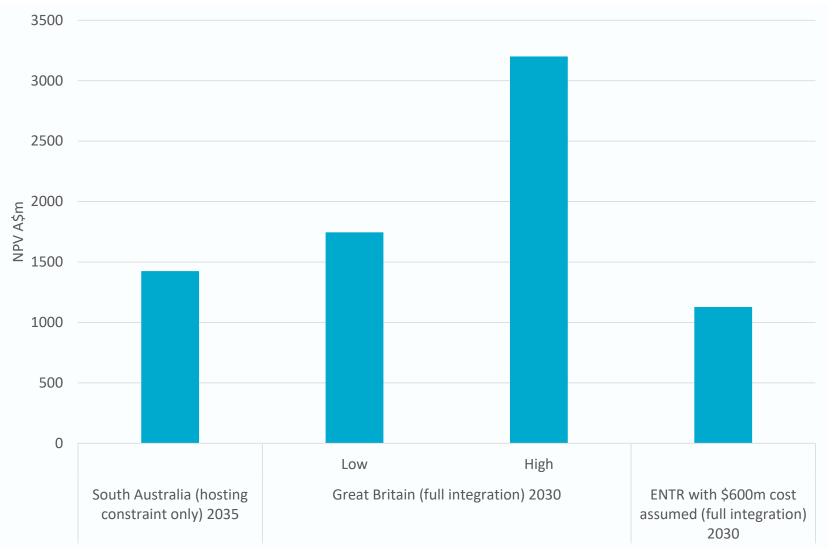
Costs in 2030/2035



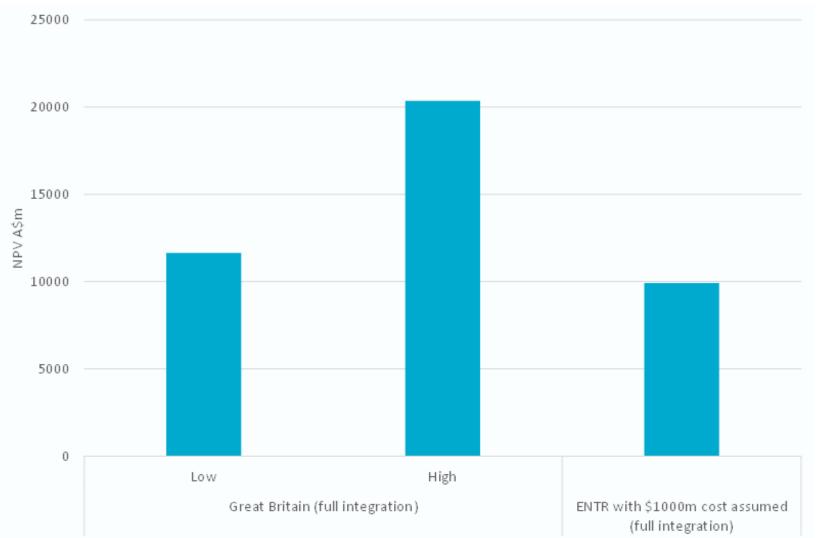
Costs in 2050



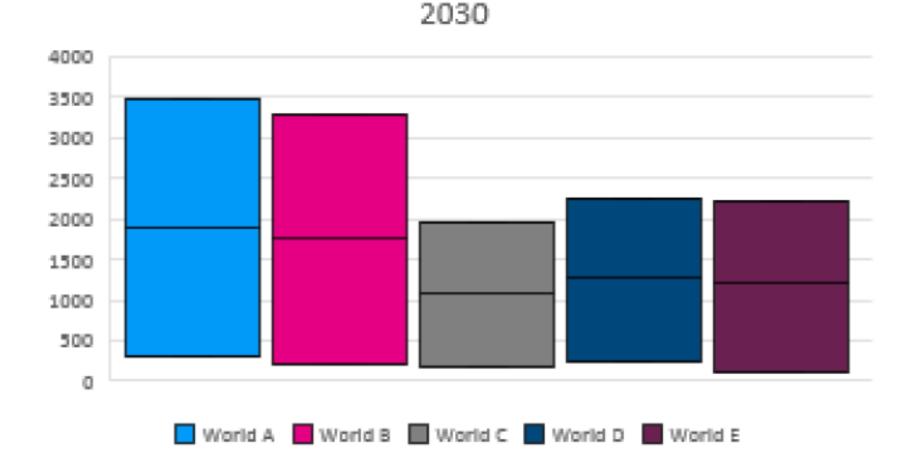
Benefits 2030 / 2035



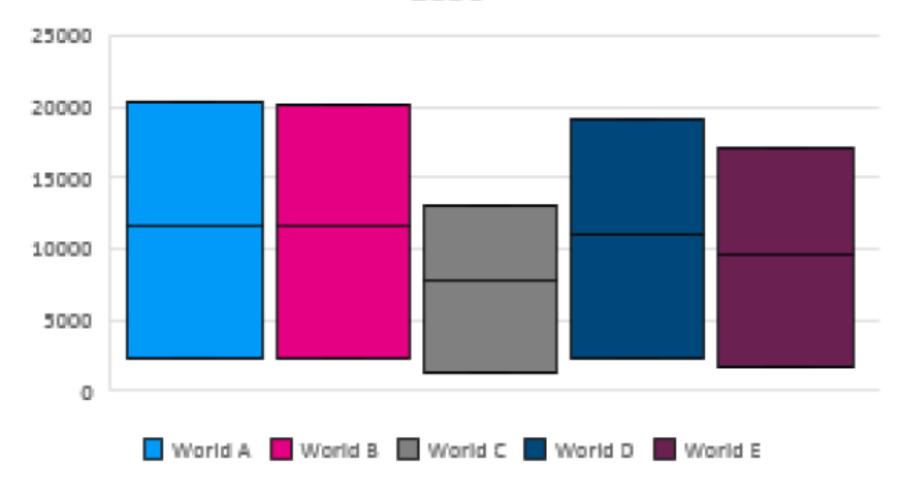
Benefits in 2050



Net benefits 2030 / 2035



Net benefits in 2050



Net benefits UK study

Net benefits UK study

2050

Next steps

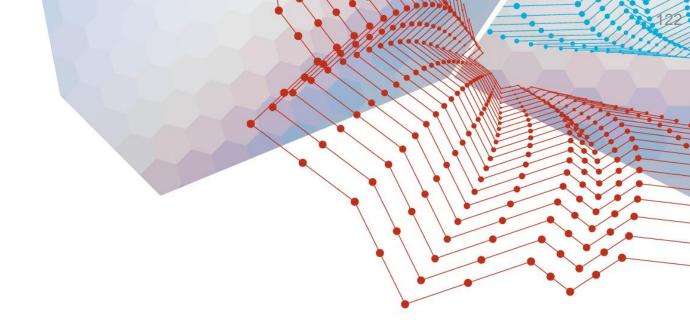
- Scoping an updated national estimate of net benefit of DER integration with particular focus on determining the least cost / least regrets architecture
 - UK Open Networks / Baringa Partners found all worlds achieved the goals but at different timings owing to complexity
- A major technical challenge is confidence in avoided generation estimates without a LV taxonomy of Australia to calculate curtailed solar PV.
- Opportunity to adopt learnings / methods from UK study

Thank you

Energy Paul Graham Chief Economist Energy

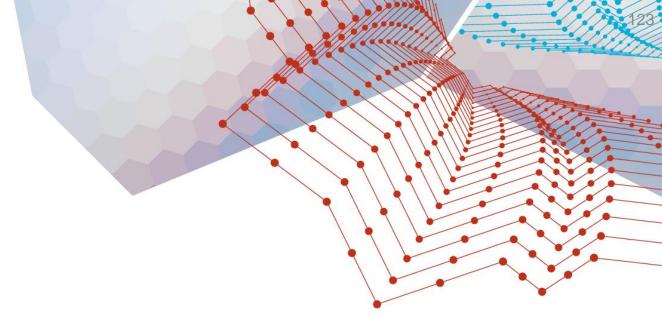
- t +61 2 4960 6061
- e paul.graham@csiro.auw www.csiro.au/energy

ENERGY www.csiro.au

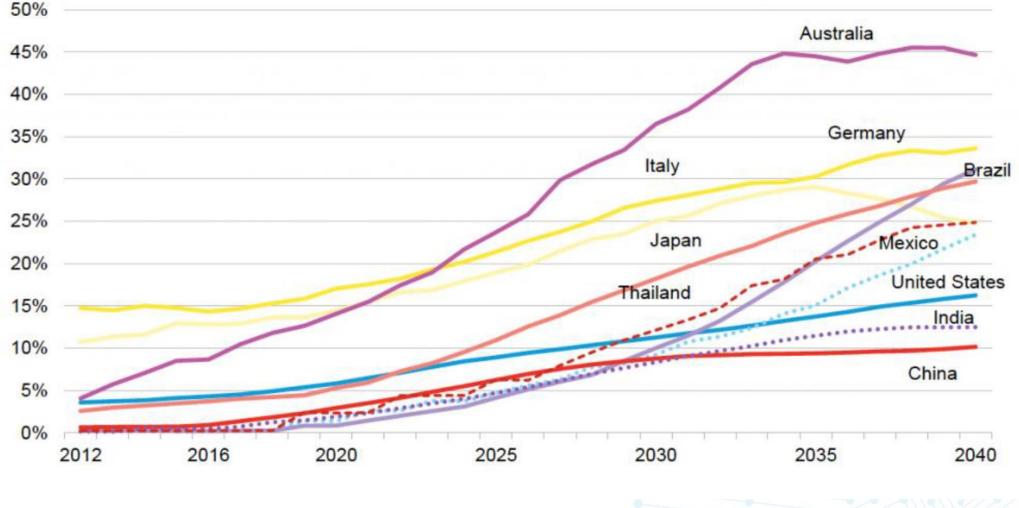


Next Steps

Publication/Activity	Date
Open Energy Networks workshops - outputs summary	Early April 2019
Publish Required Capabilities and Actions paper	Apr 2019
CSIRO Cost-Benefit analysis for Distribution level optimisation	Mar/Apr 2019
Stakeholder Workshops testing draft framework recommendation	May 2019
Final Distributed Market Framework recommendation	July 2019
Stakeholder consultation on Final Distributed Market Framework recommendations	Aug/Sept 2019
Publish Final Distributed Market Framework recommendations	Oct 2019
Distribution Market trials in QLD, Victoria and SA to test Hybrid Model variations	Ongoing



Thank You!!!


Reference Slides

A Changing World – Australia moving to a hyper-decentralized future

Decentralization ratio

	Description	Timin	g	Exp	posure	Risk level
Behaviour during disturbances	DER may disconnect or cease generation en masse following power system disturbances. This means that moderate disturbances may escalate into severe disturbances, decreasing robustness of the power system.	•	2019 onwards.Aggregate behaviour is already large enough to potentially exacerbate disturbances to an operationally significant degree.It may take multiple years to implement new standards to address shortcomings, so urgent action is required.	•	Exposed during all periods with moderate to high levels of distributed PV generation. Could exacerbate faults or frequency disturbances during high PV periods.	High
Dispatchability	At present, there is no technical pathway to actively manage the generation from distributed PV systems, which is now the largest effectively the large generator (in aggregate) in the NEM. In periods when distributed PV contributes a large percentage of regional generation, AEMO may no longer be able to reduce interconnector flows. This is required under present operational practice during periods of forced outages, bushfires, or other emergency conditions. This exacerbates risks of system black, if there is a subsequent credible network failure.	•	2019 – 2024 Partially addressed by new SA-NSW interconnector, but intra-regional dispatchability issues may also emerge (eg. Port Lincoln) Introducing PV feed-in management will take several years, so urgent action is required.	•	Exposed during periods where demand is low, and rooftop PV generation is high, if there is a co-incident emergency need to reduce interconnector flows (eg. forced outage on one of Heywood's circuits, bushfire, severe weather, etc)	High
Emergency Frequency Control Schemes	Distributed PV generation reduces the net load available for shedding under UFLS. This means that this "back-stop" mechanism becomes progressively less effective as net load decreases. Furthermore, feeders are projected to be operating in reverse flows in some periods. Under these conditions, the UFLS could operate in reverse, and act to exacerbate a frequency disturbance (rather than helping to correct it). This creates a new risk of cascading system failure.	•	2019 onwards It is estimated that SA has already experienced some periods with very little load available for shedding. From Dec 2019, a high number of feeders in the UFLS could be operating in reverse flows in some periods, creating a risk of counter-productive UFLS operation.		All periods with high levels of PV generation, if a non-credible contingency event occurs. Load available for shedding is estimated to be inadequate to cover loss of Heywood in ~0.2% of periods in 2019, increasing to ~2% of periods when synchronous condensers are installed in SA (2020).	High
System restart	At present, system restart ancillary services (SRAS) must be provided by large, synchronous units. In order to black start these units, an adequate source of stable load is required to meet their minimum loading requirements. Distributed PV reduces the amount of stable load available to support a black start of SRAS units.	•	Unknown, further analysis required. May already be periods where there is inadequate stable load available.	•	Any period with a large proportion of generation supplied by distributed PV, if attempting to perform a black start. Black start events should be very rare. The Heywood interconnector provides an alternative pathway for restart. SA SRAS units do not rely upon trip to house load, so it should be possible to wait until evening (when distributed PV is not operating) to commence the restart sequence.	Moderate

Common areas for action

Priority Area	Recommendation to be enacted	Description	Rationale
	Define the aggregator role	Clarification around the role the aggregator will play in the DER optimisation and its relationship with the energy retailer is required	In the functional specification workshops many stakeholders called for greater clarity for this role, its responsibilities including those to the customer. SGA, VPP, WDR as well as network services require a relationship with a customer that differs from the current Retailer relationship. OpEN recommends further work to define this role, included in this will be a set of common standards for DER connection and communication. ENA recently released its new Basic common connection guidelines in February.
Aggregator development	Aggregator and energy retailer coordinate to develop portfolios of customers	Aggregators and energy retailers can begin to further engage with active DER customers to develop a range of services that it may offer the network or market operators.	This is already starting to happen however, the gap that the project has identified is the cross over between the product and services DER can provide and the future network and system requirements prior to the development of portfolios of customers. The ability for DER to provide these services will be driven by the mechanisms for pricing (ie market or other procurement process) and the ability for a DER owner to access these markets AEMO has begun work on understanding the services that a future system and network requirements and the various supply and demand side assets that can provide these services (next slide).

Priority Area	Recommendation to trial	Description	Rationale
	Aggregator and energy retailer apply to participate in the wholesale and FCAS services markets	All of the frameworks anticipate that DER, or aggregated portfolios of DER, will participate as a Market Ancillary Services provider, Market Customer or Market Generator.	While this is happening in part, the ability of Aggregators to participate in markets visible to AEMO is not consistent. The VPP Demonstrations are a key action necessary to allow further DER participation in energy and FCAS markets. The AEMC's WDR rule change process will also help to shed light on the process of wholesale market integration for DER as it is anticipated that this will clarify the roles of Retailer and Aggregator; and plans to address at least in part; issues surrounding the introduction of any multiple trading relationship regime.
Wholesale market for DER integration	Aggregator and energy retailer dispatch customers in response to market signals or contractual arrangements	The creation of communication infrastructure between aggregators, energy retailers and the market platform to facilitate the use of real-time dispatch signals is needed to unlock DER value A framework for dispatch at a Wholesale and Local Level will need to be developed including standard communication protocols and a common bidding process and common infrastructure that can be then transposed by Aggregators/Retailers to send signals to DER.	While this may be occurring in some trials this is not done to any standard, so as a minimum some sort of common protocol is required. This will encourage competition by not "locking in" customers to proprietary protocols. Further issues include the 2-sided nature of battery capability which cannot operate seamlessly in the market. To this end AEMO is working with stakeholders involved in the VPP Demonstrations trial, as well as other ARENA funded projects to develop common API specifications in order to avoid "rail gauge" issues for Aggregators and Retailers looking to engage with multiple DNSPs and trials.

Energy Networks

Priority Area	Recommendation to trial	Description	Rationale
Network services market for DER integration	Adjust market rules to establish a network services market	A trial area for a distribution network services market could be established: to gauge the costs and benefits such a market would bring; to better understand the appetites of customers, aggregators, energy retailers and network operators to participate; and to determine best practice going forward	OpEN agree that a further definition and trialling of a market for network services is required prior to the need to change market rules. Currently DNSPs can contract and pay for these services directly and the need for a market and the design of any market will need to be determined. Trials of ability of DER to provide Network Services are already underway thanks to ARENA funding. One such project Networks Renewed has UTS working in AusNet and Essential Distribution regions to test the ability of DER to provide both active and reactive power to help manage network voltage issues. Further trials of this nature will be required to test the ability to communicate with DER, the nature of DER response and its effect on the LV and HV voltage levels.
	Rules or guidance is created on the use of bilateral network services contracts out with the market platforms	Bilateral contracts for network service must be coordinated with market operations and rules established setting out any exclusions on the use of bilateral contracts out with an optimised market platform	Prior to any market for network services, guidance for how contracts for services are struck and dispatched will help AEMO, networks and aggregators operate the system network and manage there own portfolios respectively. This recommendation concerns the minimum level of visibility the market and network operator may need to ensure the reliable operation of the system and network.

Network services AEMO dispatches the T-NSCAS, wholesale and FCAS services markets AEMO dispatches the T-NSCAS, wholesale and FCAS services markets The Function Specifications workshops identified the need to incentivise and procure network services market for transmission customers The Function Specifications workshops identified the need to incentivise and procure network services market open to transmission customers Network services Metwork services The Function Specifications workshops identified the need to incentivise and procure network services market is not incorrectly conflated with existing Network Support and Control Ancillary Services (NSCAS). This implies a future where these services are co-optimised with Wholesale and FCAS services markets AEMO dispatches the T-NSCAS, wholesale and FCAS services markets An example of a trial running in the UK is the National Grid/UK Power Networks Power Potential trial which uses an auction mechanism for DER (and other types of assets) to provide active and reactive power to help manage voltage and improve capacity on the Transmission Network.	Priority Area	Recommendation to trial	Description	Rationale
	market for transmission	•	network constraints by trailing a network services	the need to incentivise and procure network services from DER. The OpEN team wants to ensure that the new Network Services market is described in a manner to ensure that it is not incorrectly conflated with existing Network Support and Control Ancillary Services (NSCAS). This implies a future where these services are co-optimised with Wholesale and FCAS markets. An example of a trial running in the UK is the National Grid/UK Power Networks Power Potential trial which uses an auction mechanism for DER (and other types of assets) to provide active and reactive power to help manage voltage and improve capacity on the Transmission

Priority Area	Recommendation to trial	Description	Rationale
Pricing signals	Pricing signals	Local pricing signals can be developed to manage customer behaviour out with a market or contractual obligation. Signals can be market driven (i.e. based on the wholesale price of electricity), network driven (i.e. based on local constraints for import / export) or a combination of both. Trials may be undertaken to better understand customer response to pricing signals and their position in the transition to a Distributed Market framework	 OpEN have identified pricing as a key gap in the consultation paper and frameworks identified in the process. Pricing will play a key role in the future customer propositions for DER and may hinder Distribution level optimisation if not designed in the correct manner. We would welcome the opportunity to work closely with AEMC or AER on explore these issues. One example of an approach being taken in the California ISO is the introduction of a specific DER tariff for aggregators looking access markets administered by the ISO. This may be best done in a separate paper or as part of the DEIP process.

APPENDIX

FRAMEWORKS – FURTHER DETAIL

Market arrangements	 There is a central market comprised of wholesale and ancillary services markets (i.e. FCAS, NSCAS) that is organised and operated by AEMO There is a single central market platform that facilitates the direct access of market participants to the different markets enabling "value stacking" for energy resource owners The central market platform collects bids and offers from market participants, including DER via aggregators/retailers, and makes them available to AEMO for whole system optimisation
AEMO	 AEMO organises and operates the central market and is responsible for the dispatch and settlement of the market and system security and reliability across the five interconnected states through T- and D-network connected energy resources AEMO optimises the dispatch of energy resources considering T-network and D-network constraints AEMO has a central role in coordinating how DER are used by the system as a whole including their procurement, dispatch and settlement for D-network constraint management AEMO has the commercial relationship with DER via aggregators/retailers and is responsible for the financial settlement of market participants
DSO	 The DSO is responsible for the development and operation of the electricity distribution network following an active network management approach The DSO provides DER with static operating envelopes based upon the technical capability forecast of the D-network to accommodate DER dispatch in order to inform DER bids and offers into the central market The DSO exchanges information with the AEMO, such as network operational status and forecasts, to facilitate the consideration of distribution network constraints and the development of dynamic operating envelopes in the whole system dispatch process
Aggregator / Retailer	 The aggregator/retailer combines different DER and offer their aggregated output as system services. The aggregator/retailer provides bids and offers directly to the central market platform based upon their provided operating static and/or dynamic envelope. The aggregator/retailer activates DER based on dispatch instructions received from AEMO via the central market platform
Distributed Energy Resources	 Power generation technologies (including electric energy storage facilities) and end use electricity consumers (e.g. industrial and commercial) with the ability of flexing their generation or demand (i.e. demand side response) in response to control signals that are directly connected to the electricity distribution network. DER provide energy and network services to system operators (e.g. AEMO, DSOs, etc.) for electricity system balancing and network constraint management
Customer	 Domestic or industrial end-use electricity customers that are energy conscious and therefore have invested in off-the-shelf low carbon products (e.g. solar panels, heat pumps, electric vehicles, electric battery storage) to reduce energy bills. These customers may be exporting to and importing from the D-network and would seek to benefit from retailer's time of use tariffs; and/or Domestic or smaller non-domestic end-use electricity customers with little or no interest in low carbon products or time of use tariffs

Advantages

Disadvantages

- All market participants interact with a single entity (i.e. AEMO), via the central platform, that acts as an independent, neutral and transparent market facilitator
- More moderate regulatory change required (compared to other frameworks) as AEMO already performs this type of role for wholesale and frequency, and it can be seen as an extension of the wholesale and FCAS markets
- A central market allows for streamlined standardisation of processes and procedures
- Aggregators operating across multiple DSO regions may increase competition for service provision and potentially reduce system costs
- Procurement, dispatch and settlement of DER for provision of system services is organised and operated by a single entity (i.e. AEMO)
- It allows for synergies between T- and D-network requirements to be identified through coordinated procurement processes, avoiding the risk of inefficiency through separate procurement of the same service from the same DER, or from different DER, where that DER could have solved both issues.
- It allows for the management of conflict between system service delivery requirements and distribution network capabilities as distribution network management issues can be explicitly accounted for in the procurement and dispatch processes through exchange of relevant information

- The expanded role for AEMO, requiring a wider range of resources, may have implications for AEMO's current funding model as it may need to be adapted to fit this expanded role.
- The DSO does not exercise control over the DERs connected at the distribution network that are procured and dispatched by AEMO

Safer, Stronger, Smarter Networks

	\sim	_
1	~ X	5
	\sim	0

Market arrangements	 There is a central market comprised of wholesale and ancillary services markets (i.e. FCAS, NSCAS) for energy resources connected at the T-network that is organised and operated by AEMO The central market collects bids and offers directly from T-network connected market participants and indirectly from D-network connected market participants via the DSOs, to facilitate AEMO's whole system optimisation process There is a local market for DER that is facilitated by the DSO of the respective geographical region via a local market platform The local market platform collects bids and offers from DER via aggregators/retailers for T- and D-networks constraint management and electricity transmission system balancing Both central and local markets facilitate the direct access of market participants to different markets enabling "value stacking" for energy resource owners
AEMO	 AEMO organises and operates the central market and is responsible for the dispatch and settlement of the market and system security and reliability across the five interconnected states through T- and D-network connected energy resources AEMO assesses all bids and offers and optimises the dispatch of energy resources considering T-network and D-network constraints AEMO optimises dispatch across the D-network boundary based on an aggregated dispatch schedule technically and commercially agreed with the DSO for every DER area
DSO	 The DSO is responsible for the development and operation of the electricity distribution network following an active network management approach and for the organisation and operation of the local market for DER The DSO provides DER with static operating envelopes based upon the technical capability forecast of the D-network to accommodate DER dispatch in order to inform DER bids and offers into the local market The DSO collects bids and offers for DER service provision from the local market platform. The DSO converts DER bids into an aggregated bid stack per DER area and tests these against a dynamic operating envelope based on the network state in order to ensure the activation of these DER does not unduly constrain the distribution network. The DSO passes the aggregated bids to AEMO for whole system optimisation The DSO allocates dispatch to individual aggregators/retailers based on the dispatch schedule across D-network boundary resultant from AEMO's whole system optimisation process (i.e. market dispatch engine process) The DSO acts as a non-commercial Aggregator over a defined geographic area offering regional and national services to the central market. The DSO procures, dispatches and settles DER from aggregators/retailers for D-network constraint management via the local market platform
Aggregator / Retailer	 The aggregator/retailer combines different DER and offer their aggregated output as flexibility services. The aggregator/retailer provides bids and offers directly to the local market platform. The aggregator/retailer activates the DER based on the dispatch instructions received from DSO via the local market platform

Advantages

Disadvantages

- It allows DSOs to take full responsibility for management of DER in their own networks, facilitating a more decentralised and active operation and management of distribution networks
- It allows for synergies between T- and D-network requirements to be identified through coordinated procurement processes, avoiding the risk of inefficiency through separate procurement of the same service from the same DER, or from different DER where that DER could have solved both issues.
- It allows for the management of conflict between system service delivery requirements and distribution network capabilities as distribution network management issues can be explicitly accounted for in the procurement and dispatch processes through exchange of relevant information
- It allows DSOs to prequalify, procure, dispatch and settle DER from aggregators/retailers for D-network constraint management
- The DSOs have priority over the procurement and dispatch of DERs from the distribution network
- A local market may create less barriers to entry for DERs

- DSOs do not have any existing experience with real-time dispatch processes, and have limited requirements for real-time management of their networks with respect to non-network assets. DSOs would need to establish this capability
- A streamlined interface between DSOs and AEMO around the communication of aggregated bids in real-time will need be carefully designed to minimise complexity. This model may cause challenges in integrating a whole system dispatch optimisation with distribution network optimisation, since they will be separate processes operated by separate entities
- It requires a seamless and coordinated dispatch process between DSOs and AEMO
- DSOs may not be perceived as adequately independent and unbiased to fulfil this role. Models for managing any potential conflicts of interest with ring-fencing would have to be considered
- DSOs will incur costs for the operation of a local market

Market arrangements	 There is a central market comprised of wholesale and ancillary services markets (i.e. FCAS, NSCAS) for energy resources connected at the T-network that is organised and operated by AEMO The central market collects bids and offers directly from T-network connected market participants and indirectly from D-network connected market participants via the IDSO (s), to facilitate AEMO's whole system optimisation process There is a local market platform for DER that is facilitated by the IDSO(s). The local market platform collects bids and offers from DER via aggregators/retailers for T- and D-networks constraint management and electricity transmission system balancing Both central and local markets facilitate the direct access of market participants to different markets enabling "value stacking" for energy resource owners
AEMO	 AEMO organises and operates the central market and is responsible for the dispatch and settlement of the market and system security and reliability across the five interconnected states through T- and D-network connected energy resources AEMO procures energy resources connected to the T-network directly and to the D-network through the IDSO(s), optimising via the market dispatch engine AEMO optimises dispatch across D-network boundary based on an aggregated dispatch schedule technically and commercially agreed with the IDSO(s) for every DER area
IDSO	 The IDSO organises and operates the local market for DER The IDSO collects bids and offers for DER service provision from the local market platform. The IDSO converts DER bids into an aggregated bid stack per DER area and tests these against a dynamic operating envelope based on the network state in order to ensure the activation of these DER does not unduly constraint the distribution network. The IDSO passes the aggregated bids to AEMO for whole system optimisation The IDSO allocates dispatch to individual aggregators/retailers based on the aggregated dispatch schedule across D-network boundary resultant from AEMO's whole system optimisation process (i.e. market dispatch engine process) The IDSO acts as a non-commercial Aggregator over a defined geographic area offering regional and national services to the central market. The IDSO procures and settles distributed flexibility resources from aggregators/retailers for D-network constraint management via the IDSO's local market platform
DNSP	 The DNSP is responsible for the development and operation of the distribution network following an active network management approach The DNSP provides DER with static operating envelopes based upon the technical capability forecast of the D-network to accommodate DER dispatch in order to inform DER bids and offers into the local market The DNSP exchanges information with the IDSO(s), such as network operational status and forecasts, to facilitate the consideration of distribution network constraints and the development of dynamic operating envelopes in the whole system dispatch process
Aggregator / Retailer	 The aggregator/retailer combines DER and offer their aggregated output as flexibility services. The aggregator/retailer provides bids and offers directly to the local market platform. The aggregator/retailer activates the DER based on the dispatch instructions received from IDSO via the local market platform

Advantages

Disadvantages

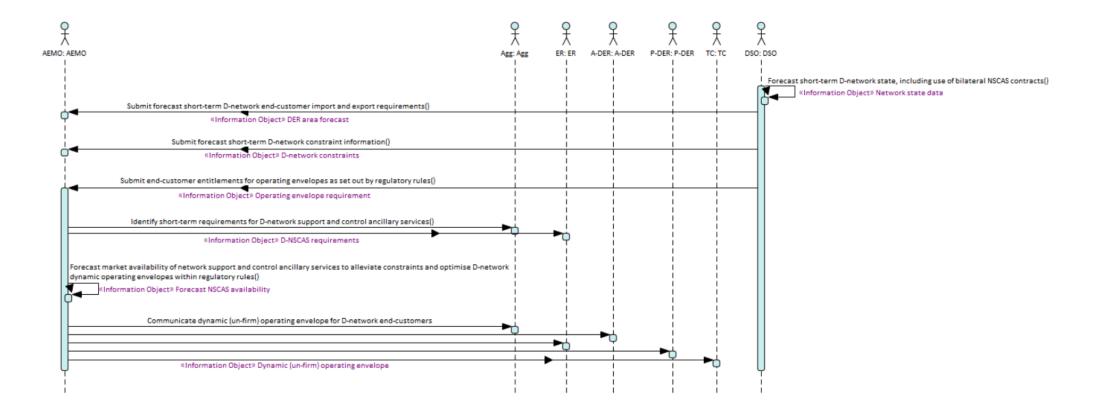
- The IDSO(s) acts as an independent, neutral and transparent market facilitator removing concerns around conflicts of interest
- It allows for synergies between T- and D-network requirements to be identified through coordinated procurement processes, avoiding the risk of inefficiency through separate procurement of the same service from the same DER, or from different DER, where that DER could have solved both issues.
- It allows for the management of conflict between system service delivery requirements and distribution network capabilities as distribution network management issues can be explicitly accounted for in the procurement and dispatch processes through exchange of relevant information
- Seamless interfaces, between the IDSO and DNSP for exchanging real-time network status and distribution network constraints, and between the IDSO and AEMO for co-optimisation of resources in a multi-stage optimisation process, can be complex to achieve
- New independent organisations would need to be established in each distribution network area to take on the role of IDSO
- IDSO(s) would need to develop extensive capabilities on power networks and systems to deliver on their role and responsibilities

Market arrangements	 There is a two-sided market platform, comprised of wholesale and ancillary services markets (i.e. FCAS, NSCAS) that is organised and operated by AEMO The platform facilitates the direct access of market participants to the different markets enabling "value stacking" for energy resource owners The platform collects bids and offers from market participants, including DER via aggregators/retailers, and makes them available to AEMO for whole system optimisation
AEMO	 AEMO organises and operates the central market and is responsible for the dispatch and settlement of the market and system security and reliability across the five interconnected states through T- and D-network connected energy resources AEMO optimises the dispatch of energy resources considering T-network and D-network constraints AEMO has a central role in coordinating how DER are used by the system as a whole including their procurement, dispatch and settlement for D-network constraint management AEMO relays market bids from DER to the DSO, and the generated dynamic operating envelope from the DSO to DER AEMO has the commercial relationship with DER via aggregators/retailers and is responsible for the financial settlement of market participants
DSO	 The DSO is responsible for the development and operation of the electricity distribution network following an active network management approach The DSO provides DER with static operating envelopes based upon the technical capability forecast of the D-network to accommodate DER dispatch in order to inform DER bids and offers into the central market The DSO assesses market bids, provided by AEMO, and D-network constraints in order to generate dynamic operating envelopes for DER, communicated through the market platform, which aim to respect distribution network constraints and inform their technical and commercial offering to the markets
Aggregator / Retailer	 The aggregator/retailer combines different DER and offer their aggregated output as system services. The aggregator/retailer provides bids and offers directly to the central market platform based upon their provided operating static and/or dynamic envelope. The aggregator/retailer activates DER based on dispatch instructions received from AEMO via the central market platform
Distributed Energy Resources	 Power generation technologies (including electric energy storage facilities) and end use electricity consumers (e.g. industrial and commercial) with the ability of flexing their generation or demand (i.e. demand side response) in response to control signals that are directly connected to the electricity distribution network. DER provide energy and network services to system operators (e.g. AEMO, DSOs, etc.) for electricity system balancing and network constraint management
Customer	 Domestic or industrial end-use electricity customers that are energy conscious and therefore have invested in off-the-shelf low carbon products (e.g. solar panels, heat pumps, electric vehicles, electric battery storage) to reduce energy bills. These customers may be exporting to and importing from the D-network and would seek to benefit from retailer's time of use tariffs; and/or Domestic or smaller non-domestic end-use electricity customers with little or no interest in low carbon products or time of use tariffs

Advantages

Disadvantages

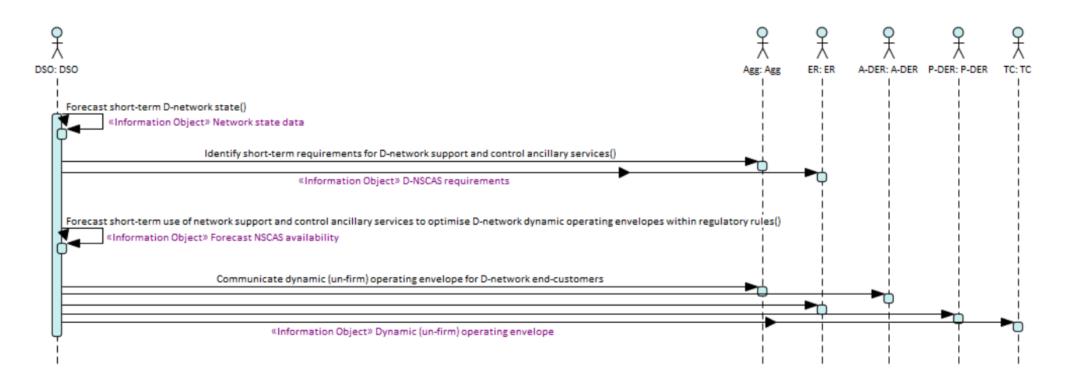
- All market participants interact with a single entity (i.e. AEMO), via the two-sided platform, that acts as an independent, neutral and transparent market facilitator
- Procurement, dispatch and settlement of DER for provision of system services is organised and operated by a single entity (i.e. AEMO)
- DSO calculates the dynamic operating envelopes based on understanding and direct access to network operation data and constraints
- Separation of market and network operation


- The expanded role for AEMO, requiring a wider range of resources, may have implications for AEMO's current funding model as it may need to be adapted
- The DSO does not have direct control over the DER connected at the distribution network because they are procured and dispatched by AEMO
- Seamless interface required between the DSO and AEMO for exchanging real-time network status and distribution network constraints and operating envelopes

ALTERNATIVE USE CASE

The use case:

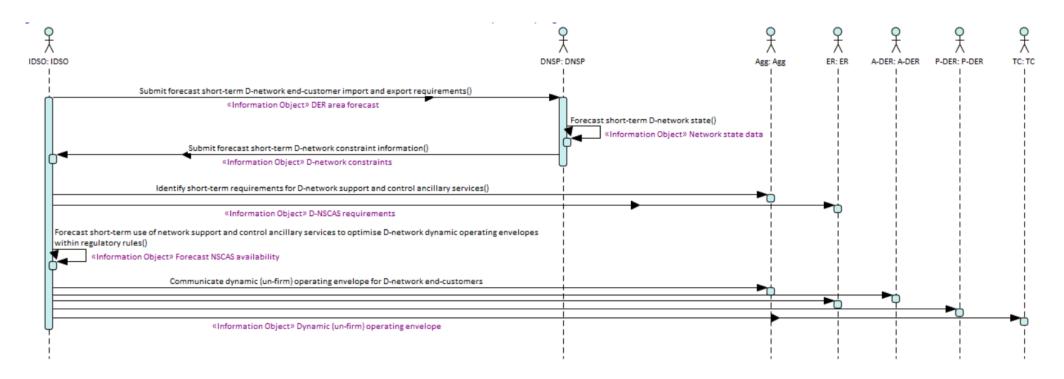
- Function: 6. DER optimisation at the distribution network level
- Activity: 1. Optimise operating envelopes of distribution network end-customers
- Process: 3. Communicate operating envelopes to D-network end-customers (short-term, non-firm)



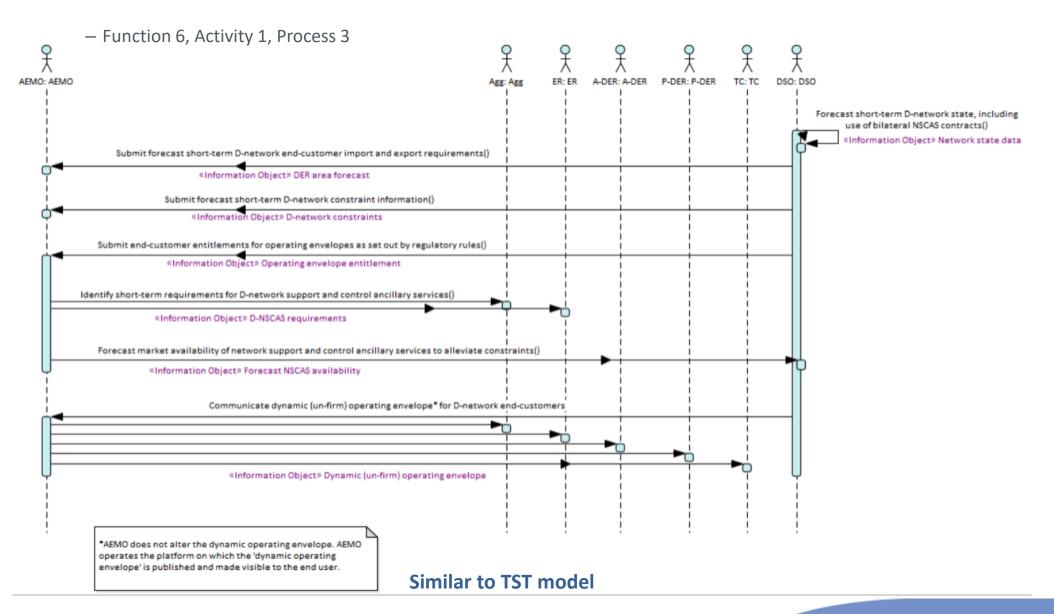
Safer, Stronger, Smarter Networks

The use case:

- Function: 6. DER optimisation at the distribution network level
- Activity: 1. Optimise operating envelopes of distribution network end-customers
- Process: 3. Communicate operating envelopes to D-network end-customers (short-term, non-firm)



Fewer steps and one less actor compared to SIP model


The use case:

- Function: 6. DER optimisation at the distribution network level
- Activity: 1. Optimise operating envelopes of distribution network end-customers
- Process: 3. Communicate operating envelopes to D-network end-customers (short-term, non-firm)

AEMO not involved (as in TST model) but two actors (DNSP and IDSO) to replace the DSO in the other models

Safer, Stronger, Smarter Networks